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Introduction



Motivation

e Form factors are basic building blocks for many
physical observables:

e t1 production at hadron and e e~ colliders

e (i e scattering

e Higgs production and decay

e Form factors exhibit an universal infrared behavior.

e In flavor physics non-diagonal form factors are
important (especially b —'s, b — v and b — ¢

transitions).
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Introduction — B — X,y

B — X.v is interesting to search (or constraint) new physics in the
quark sector:

e b — sv is forbidden at tree-level in the SM.

e The dominant contributions in the SM come from weak decays.

= The SM rate is small.

= The decay is sensitive to new physics.




Status of B — X,y

Experimental:

B(B = Xs7) 2% 1 6cev = (349 £0.19) x10™*
g —_———
+5.4%

e CLEO, BaBar and Belle measurements combined by PDG and HFLAV [arXiv:2206.07501] .

Theoretical: [Misiak, Rehman, Steinhauser '20]

B(B = Xs7)2%. 1 gcev = (3.40£0.17) x10~*
- >1.
+5.0%

Breakdown of the error: mc-interpolation

15%:\/ (£3%)° + (£3%)° + (£2.5%)°

higher orders parametric and non-perturbative



B — Xsv in the SM



B — X,y in the SM

Determination of B — X,y in the SM:

B(B — Xs7)e,>6 = B(B = XceD)ep Vi Vi

Vcb

% 6a
o [P(Eo) + N(Eo)]

s

e semileptonic phase-space factor: [Alberti, Gambino, Healey, Nandi '14] 1

>T(B — X.ep)
r(B — X,ev)

Vu b
Vcb

-

e P(Ep): perturbative contributions
P(Eo) ~T(b— XPy)=T(b— svy)+T(b— sgy) +T(b— sqgy) + ... ~ 96%

e N(Ep): non perturbtative contributions ~ 4%

1See also the talk by Matteo Fael.



Effective Hamiltonian

e At low energies we want to work in the effective theory to resum large logarithmic

contributions: (as In m‘z/v/m[z))"

e For b — sy (when neglecting NLO EW and CKM suppressed effects) we have:

4G
L = Locoxqep(u, d,s, c, b) + —F ViV Z Ci(u

Q12 (sTic)(cTib) oS cL |Ci(mp)| ~ 1
b, SL
@3,456 (sTib)>_, (aTq) q q |Ci(mp)| < 0.07
by SL
emp = nz Y
Q? 167rb25LUl bRF,uV § ‘C7(mb)| ~ 0.3
by - SL
gm a a >/Og
Q8 6 T bRG/u/ C ‘Cg(mb)| R 015



Effective Hamiltonian

8
M(b— XP —@24v*v2 Ci(up) Ci(up) G
(b— XPy) = =E=2m* |V Vil D 7 Cilja) Gi(110) G

ij=1

~P(Eo)

Three steps for the calculation:
1. Calculate the Wilson coefficients C;(10) at the hard scale pg = myy.

2. Derive the renormalization group equations and anomalous dimensions ;; in the effective
theory to evolve down to the low scale p = my:

Gl = S (0) - Gio)

J

3. Evaluate the matrix elements Gjj(mj) in the effective theory.



Effective Hamiltonian

Wilson coefficients at hard scale: for expample C7(my)

LO [Inami, Lim '81, ..] NLO [Adel, Yao '3, ..] NNLO [Misiak, Steinhasuser '04]




Effective Hamiltonian

Anomalous dimensions: u% Gi(p) = > ij(p) - ()
J
2 Ly Zog

[Gaillard, Lee '74; Altarelli, Maiani '74] [Grinstein et al '90]

[Shifmann et al '78; Grigjanis et al '88]

£y A
LO Id 4
¢ [Altarelli et al '81; Buras, Weisz '90] [Chetryrkin, Misiak, Miinz '97]
. )
4 . [Misiak, Miinz '95]
oy A

N LO 299090929898 : A ‘;

[Gorbahn, Haisch '04] [Czakon, Haisch, Misiak '06] [Gorbahn,

Haisch, Misiak '05]

NNLO

NNLO corrections give —4% correction to the branching ratio



P GEMRQ ) 4\ w2 &
M(b— X27) = ——===2m" |V, V| Y~ Ciln) Gi(11s) Gj
ij=1

~P(Eo)

Status:

e NLO is known com pletely. [Greub, Hurth, Wyler '96; Ali, Greub '91-'95; Buras, Czarnecki, Urban, Misiak '02; Pott '95]

e NNLO:
e Gy7 and Gyg are known completely. [Biokiand et al ‘05; Melnikov, Mitov '05; Asatrian et al. '06-'10]
e For numerically small contributions the two body contributions are known, the rest is

approximated using BLM.
e Gi7 and Gy interpolated between m: = 0 and m. — oo.



Calculation of G,; at NN

0.175} AB,,
Boy

0.125

0.075

0.025

Perturbative calculation can be done by considering diagrams with operator insertions and
unitarity cuts.

Calculation for m. — 00: [Misiak, Steinhauser '06, '10]

e Calculation for me = 0: [Czakon, Fiedler, Huber, Misiak, Schutzmeier, Steinhauser '15]

Calculation of terms proportional to nf for arbitrary values of m.: [Misiak, Rehmann,
Steinhauser '20]

= Interpolation to physical m./my introduces +3% error in final result.
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Two Body contributions to G,; at NNLO

[Fael, Lange, KS, Steinhauser '23]

Two Body contributions: Lo ' o

e Interpret the cut diagrams as vertex corrections:

V

— -~

, | «w“ e

b Qi s b Q

H f
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Two Body contributions to G,; at NNLO

Calculation of the vertex: b(pp) — s(ps) + v(q). pi=m3 p:=gq

M

Py
mp

o

MHF = Us(ps)PR (tl qi + b
mp

+t 7“) up(ps)

e We find 30 (591) diagrams at 2-(3-)loop level.
o We use qgraf, tapir, exp and calc for the generation of the amplitude.

e We find masters 14 (479) master integrals with Kira [Klappert, Lange, Maierhdfer, Usovitsch
20] .

12



Master integrals at NLO

Master integrals at 2-loop:

e We solve the differential equation in the variable z = my,/m..
e Boundary conditions can be computed using a large-mass expansion in m. (z — 0).

e We use the algorithm of [Ablinger, Bliimlein, Marquard, Rana, Schneider '18] to solve the
differential equation:

1. Decouple blocks of the differential equations with OreSys [Gerhold, Schneider '02] and Sigma
[Schneider '02] .
2. Factorize and solve the differential equations with the help of HarmonicSums [Ablinger '10] .

e We find the following alphabet:

%, ! , - V4 — 22

1+2° 2+ 7’
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Master integrals at 2-loop:

e We find the following alphabet:

; 1 1 —

1+2’ 2+ 272’

e We perform an analytic continuation to x = 1/z < 1/4.

e For iterated integrals containing the square root letters we change back to the variable:

1—vi—a2 " m my
W= ——— wi X=—, z=—
1+ vVioac my m

= We can express the final result in terms of harmonic polylogarithms of argument x and w
only.



Two Body contributions to G,; at NLO

fo=

New analytic results at 2-loop:

92
Gyp* =~ 4 fo(2) + ehi(2) + O(),

971 + 1916w + 1602w? + 1916w® + 971w'  2wHo(w)?
- 162(1 + w)* 3(1 + w)?
8w(27 + 57w + 26w? + Tw® + 5w) Ho(w) 16w (2 + 3w + 2w?) Ho(x)*
+ 27(1 4 w)d B 9(1 +w)*
2w( — 1 — 2w + 4w? + 6w® + 3w!) Ho(w)?  Sw(l +w?)Hyg1(w)
- 3(1 + w)s B 3(1 + w)?
8(5 + 29w + 5dw? + 29w + 5w') H_ (w ) 16w?(3 + 13w + 15w? + 6w®) Hy 1 (w)
B 27(1 + w)? 9(1 + w)®
~ 16w(l - Vu +w)
9(1 + w)°
16w(1 + vw + w)
9(1 +w)®
16w(3 + 9w + 13w? + 9w? + 3w )H_; o(w) Sw(s
+ 91+ w)p T rwy?
32w(3 + 9w + 13w? + 9w® + 3w)H_y 1 (w)  16w(2 + 3w + 2w?)Hy, o(z)
B 9(1 +w)s B 3(1+w)?
16w (2 + 3w + 2w?)Hy _10(x)  16w(1 + 3w + w?) H_1 90(w)
3(1 +w)i B 3(1 + w)?

Cr

(3 + 8w + 8w? + 3w’ + 2y/w + 3w*? + 2w/ Hy o(x)

(3 + 8w + 8w? + 3w’ — 2y/w — 3w — 2wW/*)H_, 4(2)

+ 7?2( ZHT(L’ + 60w + 94w? + 84uw® + 27w — 12y/w — 36w*?

— 36w/? — 1207/%) —

2w(3 + 8w + 3w Hy(w) = 8w(5+ 12w + 5w?)H_, (u‘))
3(1+w)t 9(1 +w)?

b Qi2 s b

with

Qi 5
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Master integrals at NNLO

Master integrals at 3-loop:

e We use the 'expand-and-match’ method already successfully applied in other projects:
e massive (diagonal) form factors [rael, Lange, KS, Steinhauser 22]

e massive operator matrix elements [ablinger, Behring, Bliimlein, De Freitas, Manteuffel, Schneider, KS '24]
°

e The basic steps are given by:
1. Calculate initial values of the master integrals.
Here we use AMFlow [Liu, Ma '22] at x = m¢/mp = 1/5.
2. Construct symbolic expansions around x = 1/5,1/10, 0 by inserting an ansatz into the

differential equation and solve a large linear system of equations in terms of a small number
of initial conditions with Kira.

3. Use the initial boundary value or to obtain an expansion around x = 1/5.
4. To obtain the next expansion use the previous expansion to obtain boundary values.

= We obtain a precise semi-analytic result for 0 < m./myp < 1/5.

We agree with a partial result obtained in [Greub, Asatrian, Saturnino, Wiegand '23]

No gluons connecting to b quark lines were considered.

16



Two Body contributions to G,; at NNLO

[1 .
Re(19') = ,,,{ (2.1071;} +3.1604912 — 27.82631,

€

0.643804  6.31123 L[ ; ) : ;
+ m{ S T T 2ToT+ 2? - (2.1071_-} + 3.1604912 — 24.66581, Pt PV
L o )
; ﬂ;v*% ..é?i«/
- 9.61()98) — 7.3744901 + 12.99311 + 54.301112 — 224.1551, — 335.398 v an . 7 T
1 y s o 4 r ) AN » /\4,\,/\,'</ P
+ m,{ - w _ 02999846 4 a2 1(2,1071_1: +3.1604912 — 27.82631, A N%}}} 66: '\‘xﬁ SRy
¢ ¢ ¢ 2 s e ﬁsﬁ J
- e Iaanar-raes ke

— 11.7523) — 5.267491% + 23.74971 — 104.4371, — 132.539

B 2.01192 87.3997 4 256.363 + 8.1?904
e € €

+z (M — 1497.261, + 6(59.332)
€

1 . . 1
+a? [72 (4,213991;f_ + 6.3200912 — 55.65251, — 23,5046) + 7( — 13.69550*
€ €

— 36.872413 — 209.66912 + 1407.451, + 233.132) +27.812315 + 142.22212

+402.20612 — 2492.031% + 7662.75, + 8375.85:| s (21)
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Two Body contributions to G,; at NN

[Czaja, Czakon, Huber, Misiak, Niggetiedt, Rehmann, KS, Steinhauser '23]

Independent calculation using unitarity cuts:

e Consider b quark propagators with operator insertions and consider all two body cuts.

e The reductions to master integrals are done with Fire [Smirnv, Chuharev '19] and Kira
[Klappert, Lange, Maierhofer, Usovitsch '20] .
e For the two body contributions we need to evaluate 447 master integrals.

e The master integrals are evaluated at a physical point with AMFLow.
e We cross-checked the boundary conditions for z — oo.

e We find agreement between the two approaches at the level of 10715

18



Two Body contributions to G,; at NNLO

[Czaja, Czakon, Huber, Misiak, Niggetiedt, Rehmann, KS, Steinhauser '23]

Independent calculation using unitarity cuts:
e Consider b quark propagators with operator insertions and consider all two body cuts.

0.181070  6.063805  34.087329
€3 €2 €
0.482853  4.093615
——— + —— + 10.984004 | ny,
€

N3G (2 =0.04) ~ — 127.624515

€2

(0.482853 . 4.185427
€

5 + 19.194053) Ne

€

(0.482853 " 4.135795
€

€2

+ 19.647238> n,

0.987654  6.383643
—— T+ 34.077780
€ € 18

2

A 1 A
AgoG(ﬁ)zp(C = 004) jad —EAgoG(ZZQZP(Z = 004) +



Towards the b — sy at NNLO without interpolation

_r AR _r% _ _ FASN
CR% O OB

Outlook:

e Finish the calculation of the three and four body cuts:

1. IBP reductions for all cuts are done.
2. Boundary conditions for z — oo calculated and cross-checked.

= The calculation will enable a more precise prediction of b — sv in the Standard Model.

19



The heavy-to-light form factor



The heavy-to-light form factor

e The heavy-to-light form factors are important for

e heavy quark decays.
e top quark production.

e muon decays.

axial-vector :

scalar :

pseudo-scalar :

X(q) = Q(a1) + q(q2)

gi=m; =0, g =s=5m

W = i
./;\1 = ﬂ)Q’Y;ﬂﬁq r,‘: = Y — 27%
Ji=Yquwsbe T =Fi(s)nrs =5

i = mpgig M = mpF=(s)
JP = impoysg TP = impFP(s)ys

20



Previous Calculations

NNLO - neglecting light fermion mass

[Bonciani, Ferroglia '08] [Asatrian, Greub, Pecjak '08]
[Beneke, Huber, Ki '09] [Bell '09]
NNLO - non-vanishing light fermion mass

master integrals: [Chen '18]
amplitude and small mass expansion: [Engel, Gnendiger, Signer, Ulrich '19]
NNNLO - neglecting light fermion mass

leading color masters: [Chen, Wang 18]
leading color amplitudes: [Datta, Rana, Ravindran, Sarkar '23]

this talk: full (semi-analytic) results at NNNLO

o o o N

21



Technical Details

Generate diagrams with QGRAF. [nogueia ‘03]

Use FORM [ruij, eda, vermaseren 177 fOr Lorentz, Dirac and color algebra. [ritergen, schelickens, vermaseren ‘og]

e Map the output to predefined integral families with q2e/exp (Harlander, Seidensticker, Steinhauser 0709 and
p p p g q P

tapir [(Gerlach, Herren, Lang 22] .

Reduce the scalar integrals to masters with Kira. [kisppert, Lange, Maierhsfer, Usovitsch, Uner '17,20]

e \We ensure a good basis where denominators factorize in € and § with ImproveMasters.m.

[Smirnov, Smirnov '20]

e Establish differential equations in variable § using LiteRed. [ 1214

complete | leading-color ‘ n? ‘ n
families 47 13 5 |11
masters 429 71 9 | 50

22



Calculation of the master integrals

The result can be split up in several color factors:

2 2
Fi(3) — TgniFl_”w@) + TEnIQFI_"w(?’) + Tﬁnhn,F,"”""(?’) +Ca TI__mFI_CA"/s(3) INGE TFnl/:/_CF"/s(3)
+ niFl_lcs(3) +Ca TF”hF,-CAnh’(a) +Cr TFnh/:I_CF"m(3) ¥
The red color factors can be solved in terms of iterated integrals, again with the algorithm
of [Ablinger, Bliimlein, Marquard, Rana, Schneider '18] .

We calculate initial values with AMFLow at § = 0 and use PSLQ for analytic
reconstruction.

We find the same letters as has been found up to 2-loop:

1 1 1

x’ 14+ x’ 2+ x

The other integrals are solved using 'expand-and-match’ starting at § = 0.

23



[Fael, Huber Lange, Miiller, KS, Steinhauser '23]

~2.(3) 322979 4427,/ 2692 608 64
1 — _ o = T _
B = —eser o5 T \ " 2a3 ~ e M 7
128, ) 8(1026 +49198)H: _ 16(18 + 2038)Ho
27 Mt 7293 818
_ 32(18+203§)Hh, 608, 1216
818 o R g T
1216 2432 64 128
L Mo = 2%, — 2 H, ¥
57 1,0,1 27 1,1,1 9 0,0,0,1 9 0,0,1,1
128 256 128 256
— —Ho,101— —Ho1,1,1 — Hi001— —Hi01,1
226 5?2 94 ° vector
-2y -2 . 1 H
g Mioa g M- 55 ( 30 + 63 1)C(3)

: J;‘i = EQ’YMUJ‘?

ML= F(s)y —

Preliminary

2mb

v
Ouvq
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[Fael, Huber Lange, Miiller, KS, Steinhauser '23]

T T T T T T T T T T T T T T T T ]
O ]

-1000 F .

= -2000F .
= _3000f ]
@ ]
[ ]
~  —-4000} 1
-5000 F .
-6000 | ]

L L L L L \:

0.0 0.2 0.4 0.6 0.8 1.0

vector : jy = ¥ oYulq

r,‘; = F/(s)vu —

o
2m

Preliminary

v
Ouvq
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Summary and Outlook

Summary

e b — sv is an important precision probe of the Standard Model.
e The precision of theory predictions need to be improved for upcoming Belle Il

measurements.
e We have calculated full charm mass effects at NLO and NNLO:

e new analytic results at NLO
e agreement of two independent approaches at NNLO

e We have calculated new analytic and semi-analytic results for the b — u vertex at NNLO.
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Summary and Outlook

Summary

e b — sv is an important precision probe of the Standard Model.
e The precision of theory predictions need to be improved for upcoming Belle Il

measurements.
e We have calculated full charm mass effects at NLO and NNLO:

e new analytic results at NLO
e agreement of two independent approaches at NNLO

e We have calculated new analytic and semi-analytic results for the b — u vertex at NNLO.

Outlook

e Finish the full charm mass effects at NNLO in order to improve the theory prediction:

£5% =/ (£3%)° + (£3%) + (£25%)
mec-interpolation parametric and non-perturbative
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Summary and Outlook

Summary

e b — sv is an important precision probe of the Standard Model.

e The precision of theory predictions need to be improved for upcoming Belle |l
measurements.
e We have calculated full charm mass effects at NLO and NNLO:

e new analytic results at NLO
e agreement of two independent approaches at NNLO

e We have calculated new analytic and semi-analytic results for the b — u vertex at NNLO.

Outlook

e Finish the full charm mass effects at NNLO in order to improve the theory prediction:

13.9%:\/ (£3%)° + (#p)7 + (£25%)°
/ﬁ/{/ﬁ/ﬁ/ﬁb’%’f/{ﬁﬁ parametric and non-perturbative

26



Backup




Status of B — X,y

Experimental:
B(B = Xe1)EPo1 6cev = (349 £0.19) x107*
————
+5.4%
Theoretical: [Misiak, Rehman, Steinhauser '20]
B(B — Xs7)2™.1 6cev = (340 £0.17) x10~*
—_———
+5.0%
Breakdown of the error:  mc-interpolation

i5%:\/ (£3%)° + (£3%)° + (£2.5%)

higher orders parametric and non-perturbative



Status of B — X,y

In the future:

B(B = Xs7)2%. 1 6cev = (3.49 £0.09) x10~*
g —_———

+2.6%

Theoretical: [Misiak, Rehman, Steinhauser '20]

B(B = Xs7)2%. 1 6cev = (3.40£0.13) x10~*
7 S—
+3.9%

Breakdown of the error: /il /ApttHotatdA
+3.9% = \/ (£3%)°  + By +  (£2.5%)

higher orders parametric and non-perturbative




Non-perturbative effects

e The matrix elements also receive non-perturbative contributions.
e The most important effects come from photons coupling to light quarks.
[ ]

Effects can be described using SCET and non-local soft matrix elements (shape
functions). [Benzke, Lee, Neubert, Paz '10]

Moments of the shape functions can be related to HQET parameters. [Gunawardana, Paz '19]



Non-perturbative effects

The matrix elements also receive non-perturbative contributions.

The most important effects come from photons coupling to light quarks.

Effects can be described using SCET and non-local soft matrix elements (shape
functions). [Benzke, Lee, Neubert, Paz '10]

Moments of the shape functions can be related to HQET parameters. [Gunawardana, Paz '19]

For example:
+o0 o0

2 dw, m?2 mpwy 2,
/\17:§Re / - |:1F<mbw1> +Tm§ h17(wl) 9 / dwl h17:§/1’6 s eee

— 00 — 00




Non-perturbative effects

e Some non-perturbative effects can be estimated by data driven approaches, e.g. the
Q7 — Qg interference:

MB™ = XYl ~ A+ BQu+ CQa+ DQs, T[B® = X7l ~ A+ BQq + CQu + DQ;

e lsospin averaged: [ ~ A+ (B + C)(Qu + Q4) + DQs = A+ 6T15

e Isospin asymmetry: Ag_ ~ B(Q, — Qq)

@NQu+Qd

— |1+ +0.3 JA
r Qd - Qu ~~ 0
SUF(3) breaking

e Belle [arXiv:1807.04236] : [o_ = (—0.48 + 1.49 4 0.97 £ 1.15)%



Non-perturbative effects

e Some non-perturbative effects can be estimated by data driven approaches, e.g. the
Q7 — Qg interference:

MB™ = XYl ~ A+ BQu+ CQa+ DQs, T[B® = X7l ~ A+ BQq + CQu + DQ;

e lsospin averaged: [ ~ A+ (B + C)(Qu + Q4) + DQs = A+ 6T15

Isospin asymmetry: Ag_ ~ E(Q, — Qq)

@NQu+Qd

— |1+ +0.3 JA
r Qd - Qu ~~ 0
SUF(3) breaking

Belle [arXiv:1807.04236] : [o_ = (—0.48 £ 1.49 +0.97 +1.15)%

Belle Il expects a factor of 4 improvement.



Towards the b — sy at NNLO without interpolation

General work flow:

1. Generate all diagrams and express the amplitudes in terms of four-loop two-scale scalar
integrals with unitarity cuts.
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General work flow:

1. Generate all diagrams and express the amplitudes in terms of four-loop two-scale scalar
integrals with unitarity cuts.

2. Reduce to master integrals with the help of Integration-By-Parts (IBP).

3. Using the IBP reduction we can find a system of differential equations for the masters Mj:

d
EM/((Z = mi/m%, €) = Ru(z,e)Mi(z,¢€)




Towards the b — sy at NNLO without interpolation

General work flow:

1. Generate all diagrams and express the amplitudes in terms of four-loop two-scale scalar
integrals with unitarity cuts.

2. Reduce to master integrals with the help of Integration-By-Parts (IBP).

3. Using the IBP reduction we can find a system of differential equations for the masters Mj:

d
EM/((Z = mi/m%, €) = Ru(z,e)Mi(z,¢€)

4. Solve the master integrals numerically with boundary values obtained for z — oc.
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