Revealing Hidden Regions and Forward Scattering

Stephen Jones

IPPP Durham / Royal Society URF

Gardi, Herzog, Ma [To Appear] Gardi, Herzog, Ma, Schlenk [2211.14845] Heinrich, Jahn, Kerner, Langer, Magerya, Olsson, Põldaru, Schlenk, Villa [2108.10807, 2305.19768]

Outline

Introduction

Feynman & Lee-Pomeransky representation

Method of Regions (MoR)

Hidden regions due to cancellation

Integrals with Pinch Singularities

Finding integrals with pinch singularities for generic kinematics

Evaluating such integrals in parameter space

MoR and Hidden Regions due to Cancellation

On-Shell & Forward Scattering

Parameter Space

Can exchange integrals over loop momenta for integrals over parameters

Feynman Parametrisation
$$[d\alpha] = \prod_{e \in G} \frac{d\alpha_e}{\alpha_e} \quad \alpha^{\nu} = \prod_{e \in G} \alpha_e^{\nu_e}$$

$$I(s) = \frac{\Gamma(\nu - LD/2)}{\prod_{e \in G} \Gamma(\nu_e)} \int_0^{\infty} [d\alpha] \, \alpha^{\nu} \delta \left(1 - H(\alpha)\right) \frac{\left[\mathcal{U}(\alpha)\right]^{\nu - (L+1)D/2}}{\left[\mathcal{F}(\alpha; s)\right]^{\nu - LD/2}}$$

 \mathcal{U}, \mathcal{F} homogeneous polynomials of degree L and L + 1

Lee-Pomeransky Parametrisation

$$I(s) = \frac{\Gamma(D/2)}{\Gamma((L+1)D/2 - \nu) \prod_{e \in G} \Gamma(\nu_e)} \int_0^\infty [d\mathbf{x}] \mathbf{x}^{\nu} (\mathcal{G}(\mathbf{x}, s))^{-D/2}$$
$$\mathcal{G}(\mathbf{x}; s) = \mathcal{U}(\mathbf{x}) + \mathcal{F}(\mathbf{x}; s)$$

Lee, Pomeransky 13

Method of Regions

Consider expanding an integral about some limit:

$$p_i^2 \sim \lambda Q^2$$
 , $p_i \cdot p_j \to \lambda Q^2$ or $m^2 \sim \lambda Q^2$ for $\lambda \to 0$

Issue: integration and series expansion do not necessarily commute

Method of Regions

$$I(\mathbf{s}) = \sum_{R} I^{(R)}(\mathbf{s}) = \sum_{R} T_{\mathbf{t}}^{(R)} I(\mathbf{s})$$

- 1. Split integrand up into regions (R)
- 2. Series expand each region in λ
- 3. Integrate each expansion over the whole integration domain
- 4. Discard scaleless integrals (= 0 in dimensional regularisation)
- 5. Sum over all regions

Smirnov 91; Beneke, Smirnov 97; Smirnov, Rakhmetov 99; Pak, Smirnov 11; Jantzen 2011; ...

Finding Regions

Assuming all c_i have the same sign we rescale $s \to \lambda^{\omega} s^{-1}$

$$I \sim \int_{\mathbb{R}^{N}_{>0}} \left[d\mathbf{x} \right] \mathbf{x}^{\nu} \left(c_{i} \mathbf{x}^{\mathbf{r}_{i}} \right)^{t} \to \int_{\mathbb{R}^{N}_{>0}} \left[d\mathbf{x} \right] \mathbf{x}^{\nu} \left(c_{i} \mathbf{x}^{\mathbf{r}_{i}} \lambda^{r_{i,N+1}} \right)^{t} \to \mathcal{N}^{N+1}$$

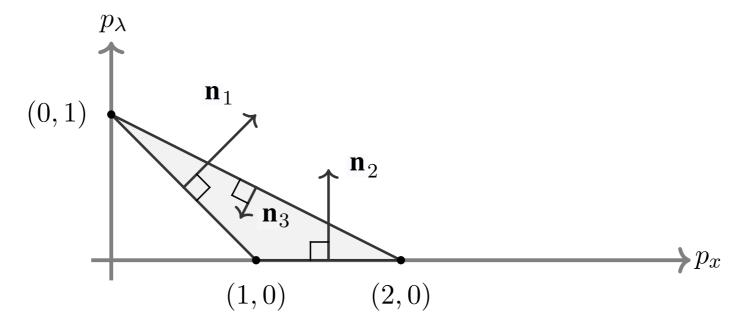
Normal vectors w/ positive λ component define change of variables $\mathbf{n}_f = (v_1, ..., v_N, 1)$

$$x = \lambda^{\mathbf{n}_f} \mathbf{y}, \qquad \lambda \to \lambda$$

Pak, Smirnov 10; Semenova, A. Smirnov, V. Smirnov 18

Example

$$p(x,\lambda) = \lambda + x + x^2$$



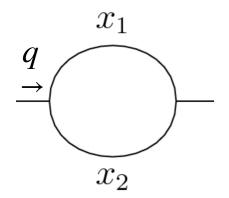
$$1,2 \in F^+$$
$$3 \notin F^+$$

Original integral I may then be approximated as $I = \sum I^{(f)} + \dots$

Regions due to Cancellation

What happens if c_i have different signs?

Consider a 1-loop massive bubble at threshold $y = m^2 - q^2/4 \rightarrow 0$



$$I = \Gamma(\epsilon) \int d\alpha_1 d\alpha_2 \frac{\delta(1 - \alpha_1 - \alpha_2)(\alpha_1 + \alpha_2)^{-2 + 2\epsilon}}{\left(\mathcal{F}_{\text{bub}}(\alpha_1, \alpha_2; q^2, y)\right)^{\epsilon}}$$

$$\mathcal{F}_{\text{bub}} = \frac{q^2}{4}(\alpha_1 - \alpha_2)^2 + y(\alpha_1 + \alpha_2)^2$$

Can split integral into two subdomains $\alpha_1 \leq \alpha_2$ and $\alpha_2 \leq \alpha_1$ then remap

$$\alpha_1 = \alpha_1'/2$$

$$\alpha_2 = \alpha_2' + \alpha_1'/2$$
: $\mathscr{F}_{\text{bub},1} \to \frac{q^2}{4} \alpha_2'^2 + y(\alpha_1' + \alpha_2')^2$ (for first domain)

Jantzen, A. Smirnov, V. Smirnov 12

Before split: only **hard** region found $(\alpha_1 \sim y^0, \alpha_2 \sim y^0)$

After split: also **potential** region found $(\alpha_1 \sim y^0, \alpha_2 \sim y^{1/2})$

Regions due to Cancellation

Various tools attempt to find such re-mappings using linear changes of variables

ASY/FIESTA Jantzen, A. Smirnov, V. Smirnov 12

Check all pairs of variables (α_1, α_2) which are part of monomials of opposite sign

For each pair, try to build linear combination $\alpha_1 \to b\alpha_1', \alpha_2 \to \alpha_2' + b\alpha_1'$ s.t negative monomial vanishes

Repeat until all negative monomials vanish or warn user

ASPIRE Ananthanarayan, Pal, Ramanan, Sarkar 18; B. Ananthanarayan, Das, Sarkar 20

Consider Gröbner basis of $\{\mathcal{F}, \partial \mathcal{F}/\alpha_1, \partial \mathcal{F}/\alpha_2, \ldots\}$ (i.e. \mathcal{F} and Landau equations)

Eliminate negative monomials with linear transformations $\alpha_1 \to b\alpha_1', \alpha_2 \to \alpha_2' + b\alpha_1'$

This is not enough to straightforwardly expose all regions in parameter space

Integrals with Pinch Singularities

Landau Equations

Polynomials \mathcal{U}, \mathcal{F} can vanish (gives singularities) for some $\alpha_i \to 0$ (end-point)

Additionally, due to signs in \mathcal{F} it can vanish due to cancellation of terms Avoid poles on real axis by deforming contour (roughly speaking...):

$$\alpha_k \to \alpha_k - i\varepsilon_k(\boldsymbol{\alpha})$$

$$\mathcal{F}(\boldsymbol{\alpha}; \boldsymbol{s}) \to \mathcal{F}(\boldsymbol{\alpha}; \boldsymbol{s}) - i\sum_k \varepsilon_k \frac{\partial \mathcal{F}(\boldsymbol{\alpha}; \boldsymbol{s})}{\partial \alpha_k} + \mathcal{O}(\varepsilon^2)$$

If $\mathcal{F}(\alpha; \mathbf{s}) = 0$ and $\partial \mathcal{F}(\alpha; \mathbf{s})/\partial \alpha_j = 0$ $\forall j$ simultaneously, contour will vanish exactly where the deformation is required, above conditions are just the Landau equations

Landau Equations (parameter space):

1)
$$\mathscr{F}(\boldsymbol{\alpha}; \mathbf{s}) = 0$$

2)
$$\alpha_j \frac{\partial \mathcal{F}(\boldsymbol{\alpha}; \mathbf{s})}{\partial \alpha_j} = 0 \quad \forall j$$

Leading: $\alpha_j \neq 0 \, \forall j$

Solutions are pinched surfaces of the integral where IR divergences may arise

Looking for Trouble: Algorithm

Generally, solutions of the Landau equations depend on s. Let us restrict our search to solutions with *generic* kinematics

$$\mathcal{F} = -\sum_{i} s_{i} \left[f_{i}(\boldsymbol{\alpha}) - g_{i}(\boldsymbol{\alpha}) \right] = \sum_{i} \mathcal{F}_{i,-} + \mathcal{F}_{i,+}$$
$$\mathcal{F}_{i,-} = -s_{i} f_{i}(\boldsymbol{\alpha}), \quad \mathcal{F}_{i,+} = s_{i} g_{i}(\boldsymbol{\alpha}), \quad f_{i}(\boldsymbol{\alpha}), g_{i}(\boldsymbol{\alpha}) \geq 0$$

Algorithm (finds integrals which potentially have a pinch for massless case)

For each s_i :

- 1) Compute $\mathcal{F}_{i,-}$, $\mathcal{F}_{i,+}$
- 2) If $\mathcal{F}_{i,-} = 0$ or $\mathcal{F}_{i,+} = 0 \to \text{Exit}$ (no cancellation)
- 3) If $\partial \mathcal{F}_{i,-}/\partial \alpha_j = 0$ or $\partial \mathcal{F}_{i,+}/\partial \alpha_j = 0$ set $\alpha_j = 0 \to \text{Goto 1}$

Else → Exit (potential cancellation)

Much more sophisticated algorithms for solving Landau equations exist

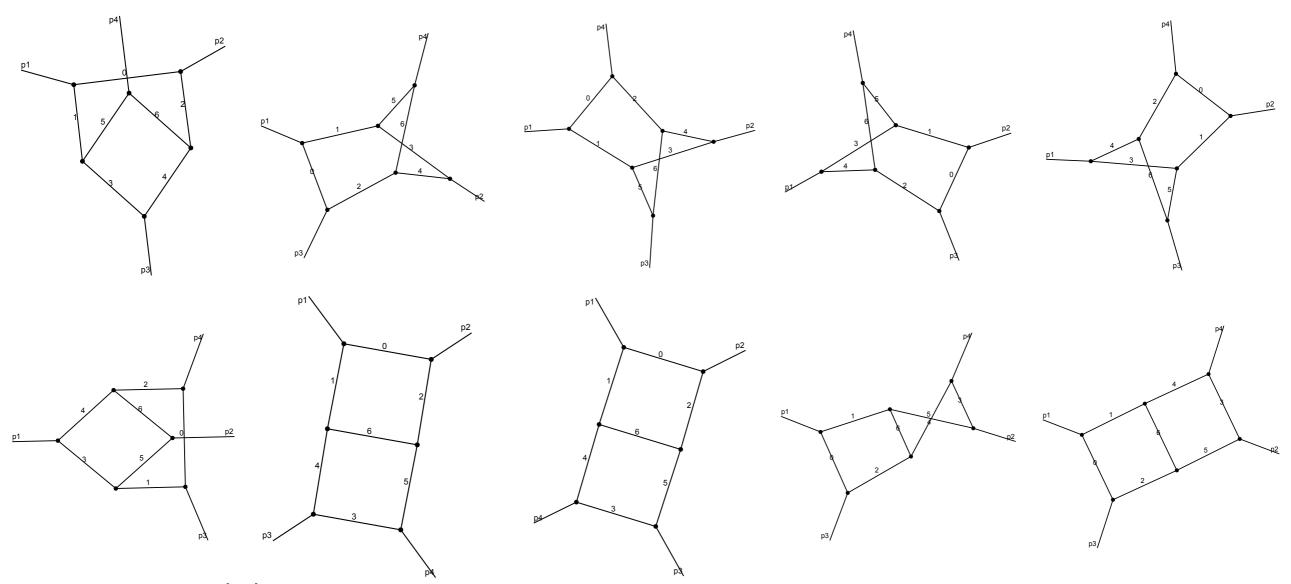
(E.g.) Mizera, Simon Telen 21; Fevola, Mizera, Telen 23 (See also) Gambuti, Kosower, Novichkov, Tancredi 23

Looking for Trouble: 1- & 2-loops

We considered massless 4-point scattering amplitudes ($s_{23} = -s_{12} - s_{13}$)

@1-loop: found no candidates (trivially)

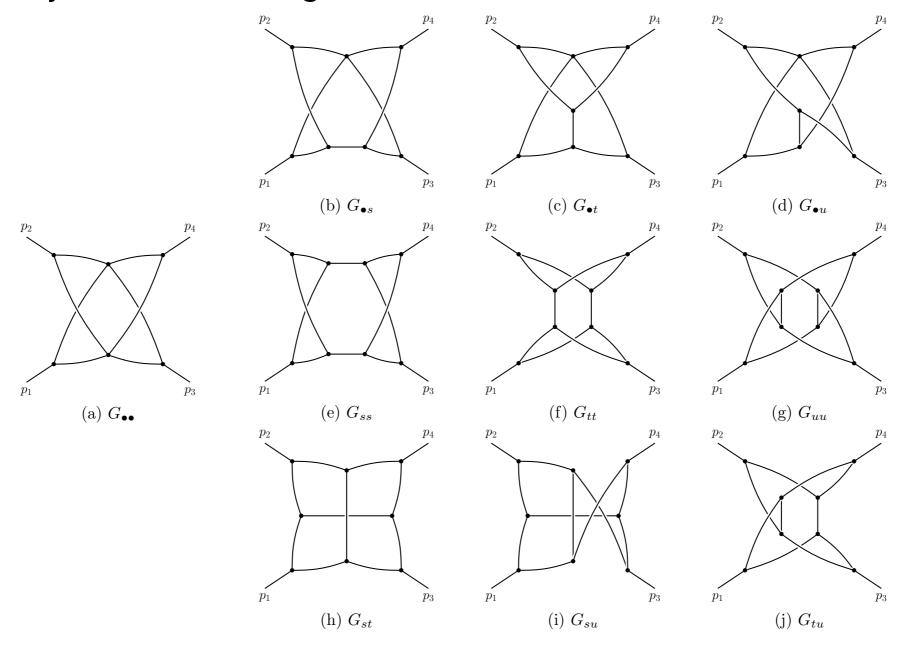
@2-loop:



+ ... no candidates (!)

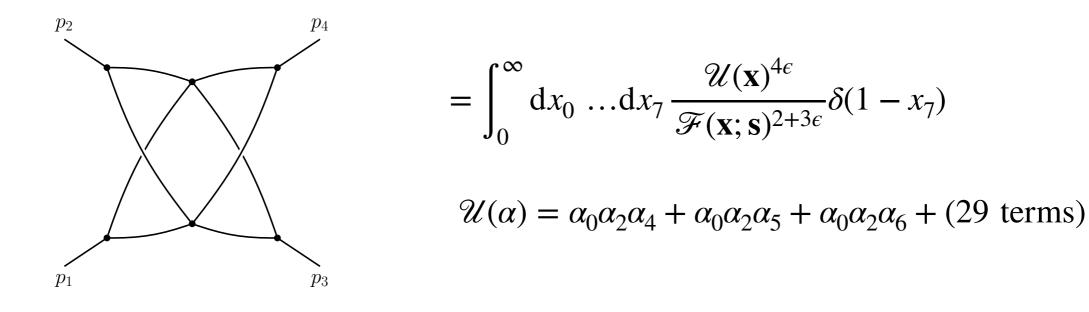
Looking for Trouble: 3-loops

@3-loop: finally some interesting candidates



The complete set of corresponding master integrals for generic s_{12}, s_{13} are known Henn, Mistlberger, Smirnov, Wasser 20; Bargiela, Caola, von Manteuffel, Tancredi 21;

Interesting Example



$$\mathcal{F}(\boldsymbol{\alpha}; \mathbf{s}) = -s_{12} (\alpha_1 \alpha_4 - \alpha_0 \alpha_5) (\alpha_3 \alpha_6 - \alpha_2 \alpha_7) - s_{13} (\alpha_1 \alpha_2 - \alpha_0 \alpha_3) (\alpha_5 \alpha_6 - \alpha_4 \alpha_7),$$

$$\frac{\partial \mathcal{F}(\boldsymbol{\alpha}; \mathbf{s})}{\partial \alpha_0} = s_{12} \alpha_5 (\alpha_3 \alpha_6 - \alpha_2 \alpha_7) + s_{13} \alpha_3 (\alpha_5 \alpha_6 - \alpha_4 \alpha_7),$$

$$\vdots$$

$$\frac{\partial \mathcal{F}(\boldsymbol{\alpha}; \mathbf{s})}{\partial \alpha_7} = s_{12} \alpha_2 (\alpha_1 \alpha_4 - \alpha_0 \alpha_5) + s_{13} \alpha_4 (\alpha_1 \alpha_2 - \alpha_0 \alpha_3)$$

Can have a leading Landau singularity with generic kinematics (arbitrary s_{12} , s_{13}) when each factor of \mathcal{F} vanishes!

Interesting Example

Let's try to compute this with sector decomposition (pySecDec)

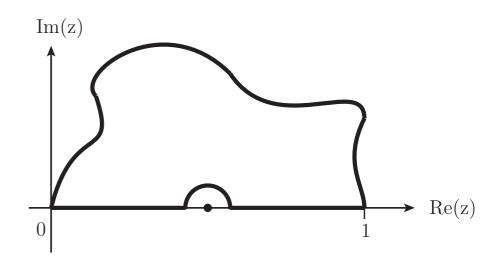
```
3:54.738] got NaN from k146; decreasing deformp by 0.9 to (1.1765883620056724e-10, 1.1765883620056724e-10, 1.1765883620056724e-10, 1.176588362005672e-16, 1.176588362005672e-16, 1.176588362005672e-16, 1.176588362005672e-16)
3:54.854] got NaN from k141; decreasing deformp by 0.9 to (1.5893964098094157e-11, 1.5893964098094157e-11, 1.5893964098094157e-17, 1.5893964098094157e-17)
     3:55.031] got NaN from k144; decreasing deformp by 0.9 to (1.9029072647552813e-13, 1.9029072647552813e-13, 1.9029072647552823e-19, 1.9029072647552823e-19, 1.9029072647552823e-19, 1.9029072647552823e-19, 1.9029072647552823e-19)
3:55.592] got NaN from k120; decreasing deformp by 0.9 to (1.1765883620056724e-10, 1.1765883620056724e-10, 1.1765883620056724e-10, 1.176588362005672e-16, 1.176588362005672e-16, 1.176588362005672e-16, 1.176588362005672e-16, 1.176588362005672e-16, 1.176588362005672e-16)
3:55.772] got NaN from k117; decreasing deformp by 0.9 to (2.4599539783880517e-10, 2.4599539783880517e-10, 2.4599539783880515e-16, 2.4599539783880515e-16, 2.4599539783880515e-16, 2.4599539783880515e-16, 2.4599539783880515e-16)
     :55.897] got NaN from k141; decreasing deform by 0.9 to (1.4304567688284741e-11, 1.4304567688284741e-11, 1.4304567688284738e-17, 1.4304567688284738e-17, 1.4304567688284738e-17, 1.4304567688284738e-17)
       :55.988] got NaN from k36; decreasing deformp by 0.9 to (4.1025099470395204e-11, 4.1025099470395204e-11, 4.1025099470395204e-11, 4.102509947039519e-17, 4.102509947039519e-17, 4.102509947039519e-17, 4.102509947039519e-17)
      :56.117] got NaN from k144; decreasing deformp by 0.9 to (1.7126165382797532e-13, 1.7126165382797532e-13, 1.7126165382797541e-19, 1.7126165382797541e-19, 1.7126165382797541e-19, 1.7126165382797541e-19, 1.7126165382797541e-19)
       :56.478] got NaN from k117; decreasing deformp by 0.9 to (2.2139585805492464e-10, 2.2139585805492464e-10), 2.2139585805492464e-10, 2.2139585805492464e-16, 2.2139585805492464e-16, 2.2139585805492464e-16)
      :56.633] got NaN from k146; decreasing deformp by 0.9 to (9.530365732245948e-11, 9.530365732245948e-11, 9.530365732245948e-11, 9.530365732245948e-17, 9.530365732245943e-17, 9.530365732245943e-17, 9.530365732245943e-17)
     ::56.694] got NaN from k141; decreasing deformp by 0.9 to (1.2874110919456267e-11, 1.2874110919456267e-11, 1.2874110919456265e-17, 1.2874110919456265e-17, 1.2874110919456265e-17, 1.2874110919456265e-17)
     5:56.870] got NaN from k36; decreasing deformp by 0.9 to (3.692258952335568e-11, 3.692258952335568e-11, 3.692258952335567e-17, 3.69225895233567e-17, 3.69225895233567e-17, 3.69225895233567e-17, 3.692258952335567e-17, 3.69225895233567e-17, 3.692258952335
      :57.084] got NaN from k120; decreasing deformp by 0.9 to (9.530365732245948e-11, 9.530365732245948e-11, 9.53036573
      :57.422] got NaN from k141; decreasing deformp by 0.9 to (1.158669982751064e-11, 1.158669982751064e-11, 1.1586699827510639e-17, 1.1586699827510639e-17, 1.1586699827510639e-17, 1.1586699827510639e-17)
     1.57.732] got NaN from k146; decreasing deformp by 0.9 to (3.3230330571020116e-11, 3.3230330571020116e-11, 3.3230330571020105e-17, 3.323030571020105e-17, 3.3230330571020105e-17, 3.323030571020105e-1
     :57.841] got NaN from k144; decreasing deformp by 0.9 to (1.3872193960066002e-13, 1.3872193960066002e-13, 1.3872193960066002e-13, 1.387219396006601e-19, 1.387219396006601e-19, 1.387219396006601e-19, 1.387219396006601e-19)
      :58.019] got NaN from k120; decreasing deformp by 0.9 to (8.57732915902135a-11, 8.57732915902135a-11, 8.57732915902135a-11, 8.57732915902135a-17, 8.57732915902135a-17, 8.57732915902135a-17)
     ::58.114] got NaN from k117; decreasing deformp by 0.9 to (1.7933064502448899e-10, 1.7933064502448899e-10, 1.7933064502448899e-10, 1.7933064502448896e-16, 1.7933064502448896e-16, 1.7933064502448896e-16, 1.7933064502448896e-16)
      :58.365] got NaN from k141; decreasing deformp by 0.9 to (1.0428029844759576e-11, 1.0428029844759576e-11, 1.0428029844759575e-17, 1.0428029844759575e-17, 1.0428029844759575e-17, 1.0428029844759575e-17, 1.0428029844759575e-17)
     ::58.516] got NaN from k36; decreasing deformp by 0.9 to (2.9907297513918106e-11, 2.9907297513918106e-11, 2.9907297513918096e-17, 2.9907297513918096e-17, 2.9907297513918096e-17, 2.9907297513918096e-17, 2.9907297513918096e-17)
     :58.745] got NaN from k146; decreasing deformp by 0.9 to (7.719596243119218e-11, 7.719596243119218e-11, 7.719596243119218e-11, 7.719596243119218e-11, 7.719596243119218e-11, 7.719596243119215e-17, 7.719596243119215e-17, 7.719596243119215e-17)
8:58.797] got NaN from k144; decreasing deformp by 0.9 to (1.2484974564059401e-13, 1.2484974564059401e-13, 1.2484974564059401e-13, 1.2484974564059401e-19, 1.248497456405941e-19, 1.248497456405941e-19, 1.248497456405941e-19, 7.719596243119215e-17, 7.719596243119215e-17)
8:58.894] got NaN from k120; decreasing deformp by 0.9 to (7.719596243119218e-11, 7.719596243119218e-11, 7.719596243119215e-17, 7.719596243119215e-17, 7.719596243119215e-17, 7.719596243119215e-17)
       :59.011] got NaN from k117; decreasing deformp by 0.9 to (1.613975805220401e-10, 1.613975805220401e-10, 1.6139758052204006e-16, 1.613975805204006e-16, 1.613975805204006e-16,
     :59.271] got NaN from k36; decreasing deformp by 0.9 to (2.6916567762526297e-11, 2.6916567762526297e-11, 2.6916567762526287e-17, 2.6916567762526287e-17, 2.6916567762526287e-17, 2.6916567762526287e-17)
     3:59.422] got NaN from k146; decreasing deformp by 0.9 to (6.947636618807296e-11, 6.947636618807296e-11, 6.947636618807296e-11, 6.947636618807294e-17, 6.947636618807294e-17, 6.947636618807294e-17)
      :59.682] got NaN from k144; decreasing deformp by 0.9 to (1.1236477107653461e-13, 1.1236477107653461e-13, 1.1236477107653461e-13, 1.123647710765347e-19, 1.123647710765347e-19, 1.123647710765347e-19, 1.123647710765347e-19)
  4:00.012] got NaN from k120; decreasing deformp by 0.9 to (6.947636618807296e-11, 6.947636618807296e-11, 6.947636618807296e-12, 6.947636618807296e-13, 6.947636618807294e-17) got NaN from k141; decreasing deformp by 0.9 to (8.446704174255258e-12, 8.446704174255258e-12, 8.446704174255257e-18, 8.4467
4:00.137] got NuN from k117; decreasing deformp by 0.9 to (0.45278216983604e-16, 1.452578224698361e-10, 1.452578224698361e-10, 1.452578225782246983604e-16, 1.4525782246983604e-16, 1.452578246983604e-16, 1.4525782246983604e-16, 1.4525782246983604e-16, 1.452578246983604e-16, 1.452578246988604e-16, 1.452578246988604e-16, 1.452578246988604e-16, 1.452578246988604e-16, 1.452578246988604e-16, 1.452578246988604e-16, 1.452578246988604e-16, 1.452578246988604e-16, 1.45257824698604e-16, 1.452578246988604e-16, 1.452578246988604e-16, 1.452578246988604e-16, 1.452578
4:00.687 got NoN from k144; decreasing deformp by 0.9 to (0.2326/2595626567e-11, 0.2326/2595626567e-11, 0.2326/2595626567e-17, 0.2326/2595626569e-17, 0.2326/2595626569e-17, 0.2326/2595626569e-17, 0.2326/2595626569e-17, 0.2326/2595626569e-17, 0.2326/2595626569e-17, 0.2526/2595626569e-17, 0.2526/259562669e-17, 0.2526/259562669e-17, 0.2526/259562669e-17, 0.2526/259562669e-17, 0.2526/2595626
 4:01.312] got NaN from k36; decreasing deformp by 0.9 to (2.1802419887646303e-11, 2.1802419887646303e-11, 2.1802419887646294e-17, 2.1802419887646294e-17, 2.1802419887646294e-17) 4:01.387] got NaN from k146; decreasing deformp by 0.9 to (5.62758566123391e-11, 5.62758566123391e-11, 5.62758566123391e-11, 5.627585661233908e-17, 5.627585661233908e
  4:01.515] got NaN from k144; decreasing deformp by 0.9 to (9.101546457199304e-14, 9.101546457199304e-14, 9.101546457199304e-14, 9.10154645719931e-20, 9.10154645719931e-20, 9.10154645719931e-20, 9.10154645719931e-20)
  4:01.945] got NaN from k120; decreasing deformp by 0.9 to (5.62758566123391e-11, 5.62758566123391e-11, 5.62758566123391e-11, 5.627585661233908e-17, 5.6275856612
    4:02.196] got NaN from k117; decreasing deformp by 0.9 to (1.1765883620056724e-10, 1.1765883620056724e-10, 1.1765883620056724e-10, 1.176588362005672e-16, 1.176588362005672e-16, 1.176588362005672e-16, 1.176588362005672e-16)
     :02.432] got NaN from k36; decreasing deformp by 0.9 to (1.9622177898881674e-11, 1.9622177898881674e-11, 1.9622177898881666e-17, 1.9622177898881666e-17, 1.9622177898881666e-17, 1.9622177898881666e-17)
     1:02.436] got NaN from k144; decreasing deformp by 0.9 to (8.191391811479374e-14, 8.191391811479374e-14, 8.19139181147938e-20, 8.1913918147938e-20, 8.1913918147938e-20
    4:02.564] got NaN from k146; decreasing deformp by 0.9 to (5.064827095110519e-11, 5.064827095110519e-11, 5.064827095110519e-11, 5.0648270951105174e-17, 5.0648270951105174e-17, 5.0648270951105174e-17, 5.0648270951105174e-17)
     1:03.174] got NaN from k120; decreasing deformp by 0.9 to (5.064827095110519e-11, 5.064827095110519e-11, 5.064827095110519e-11, 5.0648270951105174e-17, 5.0648270951105174e-17, 5.0648270951105174e-17, 5.0648270951105174e-17)
    4:03.266] got NaN from k117; decreasing deformp by 0.9 to (1.0589295258051053e-10, 1.0589295258051053e-10, 1.0589295258051048e-10, 1.0589295258051048e-16, 1.0589295258051048e-16, 1.0589295258051048e-16, 1.0589295258051048e-16)
     :03.386] got NaN from k36; decreasing deformp by 0.9 to (1.7659960108993508e-11, 1.7659960108993508e-11, 1.7659960108993508e-11, 1.76599601089935e-17, 1.76599601089935e-17, 1.76599601089935e-17, 1.76599601089935e-17
  4:03.492] got NaN from k141; decreasing deformp by 0.9 to (6.1576473430320836e-12, 6.1576473430320836e-12, 6.157647343032083e-18, 6.157647343032083e-18, 6.157647343032083e-18, 6.157647343032083e-18, 6.157647343032083e-18,
    4:03.572] got NaN from k144; decreasing deformp by 0.9 to (7.372252630331437e-14, 7.372252630331437e-14, 7.372252630331441e-20, 7.37225263031441e-20, 7.37225263031441e-20, 7.372252630
```

Fails to find contour...

Contour Deformation

Feynman integral (after sector decomp):

$$I \sim \int_0^1 [d\boldsymbol{\alpha}] \, \boldsymbol{\alpha}^{\nu} \, \frac{[\mathcal{U}(\boldsymbol{\alpha})]^{N-(L+1)D/2}}{[\mathcal{F}(\boldsymbol{\alpha}; \mathbf{s})]^{N-LD/2}}$$



Deform integration contour to avoid poles on real axis Feynman prescription $\mathscr{F} \to \mathscr{F} - i\delta$ tells us how to do this

Expand
$$\mathscr{F}(z = \alpha - i\tau)$$
 around α , $\mathscr{F}(z) = \mathscr{F}(\alpha) - i\sum_{j} \tau_{j} \frac{\partial \mathscr{F}(\alpha)}{\partial \alpha_{j}} + \mathscr{O}(\tau^{2})$

Choose
$$\tau_j = \lambda_j \, \alpha_j (1 - \alpha_j) \frac{\partial \mathcal{F}(\pmb{\alpha})}{\partial \alpha_j}$$
 with small constants $\lambda_j > 0$

Soper 99; Binoth, Guillet, Heinrich, Pilon, Schubert 05; Nagy, Soper 06; Anastasiou, Beerli, Daleo 07, 08; Beerli 08; Borowka, Carter, Heinrich 12; Borowka 14;...

Contour Deformation

But for this class of examples $\mathscr{F}(\alpha)$ and all $\partial \mathscr{F}(\alpha)/\partial \alpha_i$ vanish at the same point inside the integration domain

→ pinch singularity

Example

$$\mathcal{F}(\boldsymbol{\alpha}; \mathbf{s}) = -s_{12} (\alpha_{1}\alpha_{4} - \alpha_{0}\alpha_{5}) (\alpha_{3}\alpha_{6} - \alpha_{2}\alpha_{7}) - s_{13} (\alpha_{1}\alpha_{2} - \alpha_{0}\alpha_{3}) (\alpha_{5}\alpha_{6} - \alpha_{4}\alpha_{7}),$$

$$\frac{\partial \mathcal{F}(\boldsymbol{\alpha}; \mathbf{s})}{\partial \alpha_{0}} = s_{12} \alpha_{5}(\alpha_{3}\alpha_{6} - \alpha_{2}\alpha_{7}) + s_{13} \alpha_{3}(\alpha_{5}\alpha_{6} - \alpha_{4}\alpha_{7}),$$

$$\vdots$$

$$\frac{\partial \mathcal{F}(\boldsymbol{\alpha}; \mathbf{s})}{\partial \alpha_{7}} = s_{12} \alpha_{2}(\alpha_{1}\alpha_{4} - \alpha_{0}\alpha_{5}) + s_{13} \alpha_{4}(\alpha_{1}\alpha_{2} - \alpha_{0}\alpha_{3})$$

vanish for

$$\alpha_2 = \frac{\alpha_0 \alpha_3}{\alpha_1}, \qquad \alpha_4 = \frac{\alpha_0 \alpha_5}{\alpha_1}, \qquad \alpha_6 = \frac{\alpha_0 \alpha_7}{\alpha_1}.$$

Resolution

The problem is that we have monomials with different signs...

Asy2.1 PreResolve->True

```
-bash
                                                                                                                                                                                                                                                                                                                                                                                    T#1
 MACTHXJONES:fiesta sj$ cat diagram2636.m
Get["asy2.1.m"];
Print["Diagram2636"];
 result = AlphaRepExpand[\{k1, k2, k3\}, \{k1^2, k2^2, k3^2, (k1+p1)^2, (k2+p2)^2, (k3+p3)^2,
 (k1+k2+k3)^2, (k1+k2+k3+p1+p2+p3)^2, \{p1^2-90, p2^2-90, p3^2-90, p1^2p2-s12/2, p1^2p3-90, p2^2-90, p3^2-90, p1^2p3-90, p1^2p3-
s13/2, p2*p3->-s12/2-s13/2}, {s12 -> 1, s13 -> -1/5}, PreResolve->True] (* 3-loop box *
Print[result];
 Print["======"];
Exit[];
 MACTHXJONES: fiesta sj$ wolframscript -file diagram2636.m
Diagram2636
 Asy2.1
Variables for UF: {k1, k2, k3, p1, p2, p3}
 WARNING: preresolution failed
  MACTHXJONES:fiesta sj$
```

Correctly identifies that iterated linear changes of variables are not sufficient to resolve the singularity and reports that pre-resolution has failed

Resolution

1) Rescale parameters to linearise singular surfaces

$$\mathcal{F}(\boldsymbol{\alpha}; \mathbf{s}) = -s_{12} (\alpha_1 \alpha_4 - \alpha_0 \alpha_5) (\alpha_3 \alpha_6 - \alpha_2 \alpha_7) - s_{13} (\alpha_1 \alpha_2 - \alpha_0 \alpha_3) (\alpha_5 \alpha_6 - \alpha_4 \alpha_7)$$

$$\alpha_0 \to \alpha_0 \alpha_1, \ \alpha_2 \to \alpha_2 \alpha_3, \ \alpha_4 \to \alpha_4 \alpha_5, \ \alpha_6 \to \alpha_6 \alpha_7$$

$$\mathcal{F}(\boldsymbol{\alpha}; \mathbf{s}) = \alpha_1 \alpha_3 \alpha_5 \alpha_7 \left[-s_{12} (\alpha_4 - \alpha_0) (\alpha_6 - \alpha_2) - s_{13} (\alpha_2 - \alpha_0) (\alpha_6 - \alpha_4) \right]$$

2) Split the integral by imposing $\alpha_i \ge \alpha_j \ge \alpha_k \ge \alpha_l$

$$\alpha_0 \rightarrow \alpha_0 + \alpha_2 + \alpha_4 + \alpha_6,$$

$$\alpha_2 \rightarrow \alpha_2 + \alpha_4 + \alpha_6,$$

$$\alpha_4 \rightarrow \alpha_4 + \alpha_6,$$

$$\alpha_6 \rightarrow \alpha_6$$
+perms

$$\mathcal{F}_{1}(\boldsymbol{\alpha}; \mathbf{s}) = \alpha_{1}\alpha_{3}\alpha_{5}\alpha_{7} \left[-s_{12}(\alpha_{0} + \alpha_{2})(\alpha_{2} + \alpha_{4}) - s_{13}(\alpha_{0})(\alpha_{4}) \right]$$

$$\mathcal{F}_{2}(\boldsymbol{\alpha}; \mathbf{s}) = \alpha_{1}\alpha_{3}\alpha_{5}\alpha_{7} \left[-s_{12}(\alpha_{2})(\alpha_{0} + \alpha_{2} + \alpha_{6}) + s_{13}(\alpha_{0})(\alpha_{6}) \right]$$

$$\vdots$$

$$\mathcal{F}_{24}(\boldsymbol{\alpha}; \mathbf{s}) = \alpha_{1}\alpha_{3}\alpha_{5}\alpha_{7} \left[-s_{12}(\alpha_{2} + \alpha_{4})(\alpha_{4} + \alpha_{6}) - s_{13}(\alpha_{2})(\alpha_{6}) \right]$$

All coefficients of s_{12}, s_{13} now have definite sign

Result

Can now obtain results numerically ($s_{12} = 1$, $s_{13} = -1/5$)

$$\begin{split} I_1 &= e^{-4} \left[(-3.8842800687 + 5.2359902003j) \pm (4.458 \cdot 10^{-6} + 3.638 \cdot 10^{-6}j) \right] + \dots \\ I_2 &= e^{-4} \left[(-7.9291803033 + 20.943767810j) \pm (9.149 \cdot 10^{-5} + 1.061 \cdot 10^{-4}j) \right] + \dots \\ I_3 &= e^{-4} \left[(18.5195704502 - 15.707988011j) \pm (5.897 \cdot 10^{-5} + 5.897 \cdot 10^{-5}j) \right] + \dots \\ I_4 &= e^{-4} \left[(-13.294034089) \pm (2.068 \cdot 10^{-5}) \right] + \dots \\ I_5 &= e^{-4} \left[(12.7432949988 - 23.561968275j) \pm (1.605 \cdot 10^{-5} + 1.415 \cdot 10^{-5}j) \right] + \dots \\ I_6 &= e^{-4} \left[(-4.0702330904) \pm (2.018 \cdot 10^{-6}) \right] + \dots \end{split}$$

Agrees with analytic result

$$I = 4 (I_1 + I_2 + I_3 + I_4 + I_5 + I_6)$$

$$= e^{-4} [8.34055 - 52.3608j] + \mathcal{O}(e^{-3})$$

$$I_{\text{analytic}} = e^{-4} [8.3400403922 - 52.3598775598j] + \mathcal{O}(e^{-3})$$

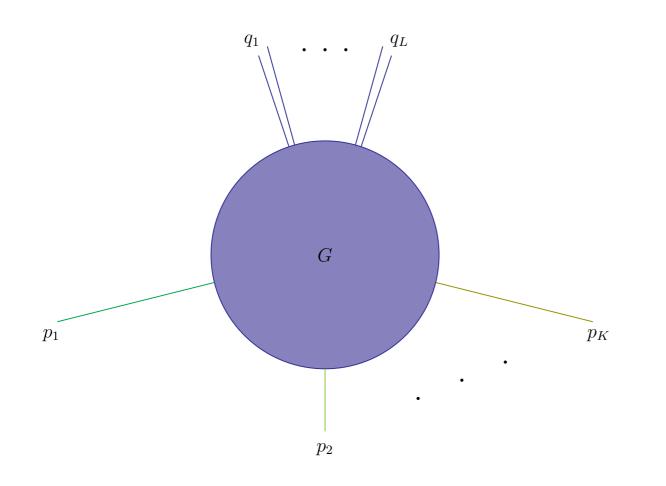
Note: even after resolution this integral is slow to compute numerically, possible to vastly improve performance by avoiding contour deformation entirely

→ See talk of Tom Stone

MoR and Hidden Regions

On-shell expansion provides a way to explore emergence of IR singularities starting from an object free of IR singularities (off-shell Green's function)

Consider an arbitrary loop, (K + L)-leg wide-angle scattering graph

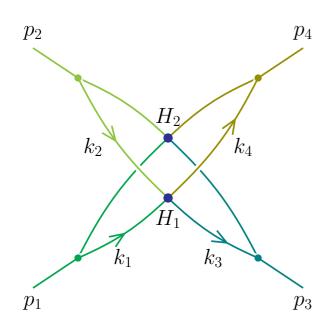


on-shell: $p_i^2 \sim \lambda Q^2 \quad (i = 1, ..., K),$

off-shell: $q_i^2 \sim Q^2 \quad (j = 1,...,L),$

wide-angle: $p_k \cdot p_l \sim Q^2 \ (k \neq l)$.

Cancellations of the type just observed lead to new regions that are *hidden* in the straightforward Newton polytope approach as they do not originate from an end-point singularity



Consider a collinear/jet configuration

$$p_i^2 = \lambda Q^2, \quad p_i \cdot v_i \sim \lambda Q, \quad p_i \cdot \overline{v}_i \sim Q, \quad p_i \cdot v_{i\perp} \sim \sqrt{\lambda} Q$$

Let us introduce a fourth (extra) loop momentum and consider the mode with all k_i collinear to p_i

$$k_i^{\mu} = Q \left(\xi_i v_i^{\mu} + \lambda \kappa_i \overline{v}_i^{\mu} + \sqrt{\lambda} \tau_i u_i^{\mu} + \sqrt{\lambda} \nu_i n^{\mu} \right)$$

Botts, Sterman 89

Momentum conservation at H_1 vertex ($k_1 + k_2 = k_3 + k_4$) implies not all ξ_i are independent:

$$\xi_{2} = \xi_{1} - \frac{1}{2}\sqrt{\lambda}\cos^{2}(\theta)\left(\tan\left(\frac{\theta}{2}\right)\Delta\tau - \cot\left(\frac{\theta}{2}\right)\Sigma\tau\right) + \lambda(\kappa_{2} - \kappa_{1}),$$

$$\xi_{3} = \xi_{1} + \frac{1}{2}\sqrt{\lambda}\tan\left(\frac{\theta}{2}\right)\Delta\tau + \lambda(\kappa_{2} - \kappa_{4}),$$

$$\xi_4 = \xi_1 - \frac{1}{2} \sqrt{\lambda} \cot \left(\frac{\theta}{2}\right) \Sigma \tau + \lambda (\kappa_2 - \kappa_3).$$

$$\Delta \tau \equiv \tau_1 + \tau_2 - \tau_3 - \tau_4$$

$$\Sigma \tau = \tau_1 + \tau_2 + \tau_3 + \tau_4$$

Now let us analyse the leading behaviour of this integrand for small λ ,

- 1) Loop measure can be expressed as $\int d^D k_1 d^D k_2 d^D k_3 = Q^{3D} \int \prod_{i=1}^3 d\xi_i d\kappa_i d\tau_i d\nu_i$
- 2) Trade large components of k_2, k_3 for small components of k_4 , $\{\xi_2, \xi_3\} \to \{\kappa_4, \tau_4\}$ Jacobian of transformation: $\det\left(\frac{\partial(\xi_2, \xi_3)}{\partial(\kappa_4, \tau_4)}\right) = \lambda^{3/2}\cos(\theta)\cot(\theta)$

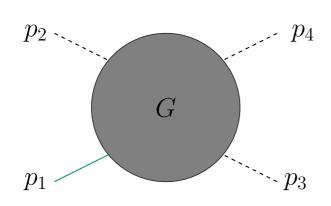
Overall obtain the following scaling:

$$\int \prod_{i=1}^{3} d\xi_{i} \ d\kappa_{i} d\tau_{i} d\nu_{i} \sim \int_{0}^{1} d\xi_{1} \underbrace{\left(\int \prod_{i=1}^{3} (\lambda d\kappa_{i})(\lambda^{\frac{1}{2}} d\tau_{i})(\lambda^{\frac{1}{2}} d\nu_{i})^{1-2\epsilon}\right)}_{\lambda^{6-3\epsilon}} \int d\kappa_{4} d\tau_{4} \ \det \left(\frac{\partial(\xi_{2}, \xi_{3})}{\partial(\kappa_{4}, \tau_{4})}\right)$$

Expect this region to scale as
$$\mu = 6 - 3\epsilon + \frac{3}{2} - 8 = -\frac{1}{2} - 3\epsilon$$

Scaling of collinear propagators

Directly applying MoR in parameter space, we do not see this region...

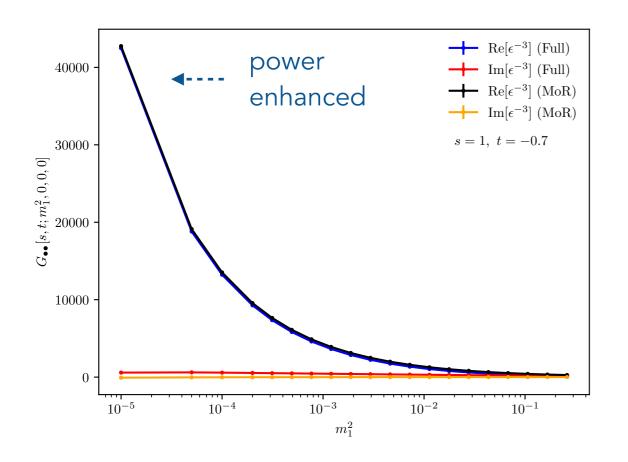


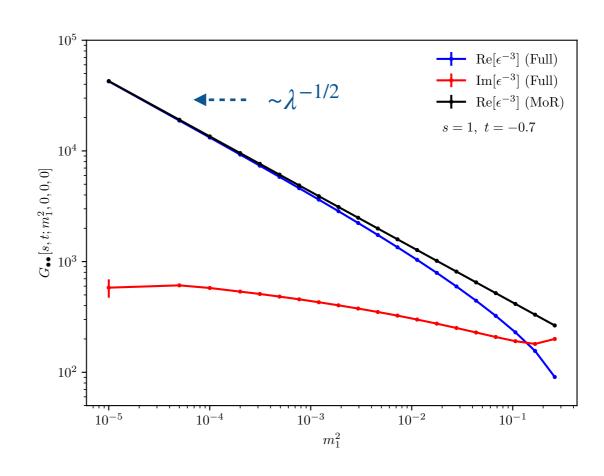
$$I \sim \begin{bmatrix} v_{\mathrm{R}} & (x_0, x_1, \dots, x_7) & \text{order} \\ (-2, -1, -2, -1, -2, -1, -2, -1; 1) & -6\epsilon \\ (-1, -2, -1, -2, -1, -2, -1, -2; 1) & -6\epsilon \\ (-1, -1, -1, 0, -1, 0, -1, 0; 1) & 1 - 3\epsilon \\ (-1, -1, 0, -1, 0, -1, 0, -1; 1) & 1 - 3\epsilon \\ (-1, -1, 0, 0, 0, 0, 0, 0; 1) & -\epsilon \\ (0, 0, 0, 0, 0, 0, 0, 0; 1) & 0 \end{bmatrix}$$

Dissecting the polytope according to our resolution procedure eliminates monomials of different sign, we now see the region in each of the 24 new polytopes

$$I_{1} \sim \begin{bmatrix} v_{\mathrm{R}} & (y_{0}, x_{1}, y_{2}, x_{3}, y_{4}, x_{5}, y_{6}, x_{7}) & v_{\mathrm{R}} & (x_{0}, x_{1}, \dots, x_{7}) & \text{order} \\ (1/2, -1, 1/2, -1, 1/2, -1, 0, -1; 1) & (-2, -2, -2, -2, -2, -2, -2; 2) & -1/2 - 3\epsilon \\ (0, -1, 1, -1, 1, -1, 0, -1; 1) & (-1, -1, -1, -1, -1, -1, -1; 1) & -3\epsilon \\ (1, -1, 1, -1, 0, -1, 0, -1; 1) & (-1, -1, -1, -1, -1, -1, -1; 1) & -3\epsilon \\ (-1, -1, -1, -1, -1, -1, -1, -1; 1) & (-2, -1, -2, -1, -2, -1; 1) & -6\epsilon \\ (1, -2, 1, -2, 1, -2, 1, -2; 1) & (-1, -2, -1, -2, -1, -2; 1) & -6\epsilon \\ (0, -1, 0, 0, 0, 0, 0, 0; 1) & (-1, -1, 0, 0, 0, 0, 0, 0; 1) & -\epsilon \\ (0, 0, 0, 0, 0, 0, 0, 0; 1) & (0, 0, 0, 0, 0, 0; 1) & 0 \end{bmatrix}$$

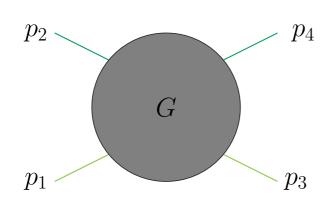
Use MoR on each of the split integrals $I_1, ..., I_{24}$ and summing only the leading region for each split (with $\mu = -1/2 - 3\epsilon$)





See strong numerical evidence that the split integrals (MoR) reproduce the leading behaviour of the full integral in the limit $p_1^2 \to 0$

Forward Scattering



Inserting $\theta \sim \sqrt{\lambda}$ into the Botts-Sterman analysis leads to one of the loop momenta becoming Glauber:

$$k_4^{\mu} - k_2^{\mu} = k_1^{\mu} - k_3^{\mu} \sim Q(\lambda, \lambda; \sqrt{\lambda})$$

We obtain $\mu = -1 - 3\epsilon$

Alternatively, can expand known analytic result in the foward limit $x = -s_{13}/s_{12}$ Henn, Mistlberger, Smirnov, Wasser 20; Bargiela, Caola, von Manteuffel, Tancredi 21;

$$I(s_{12},s_{13};\epsilon) = s_{12}^{-2-3\epsilon}\mathcal{J}(x;\epsilon), \quad \mathcal{J}(x;\epsilon) \sum_{n=-4}^{\infty} \mathcal{J}^{(n)}(x) \, \epsilon^n = \sum_{n=-4}^{\infty} \sum_{k=-1}^{\infty} \mathcal{J}^{(n,k)}(L) \, x^k \, \epsilon^n \, \stackrel{\longleftarrow}{\longleftarrow} \, L = \log(x)$$

$$\mathcal{I}(x;\epsilon) = \text{LP}\left\{I_{XX}\right\}(L;\epsilon) + \mathcal{O}(x^0)$$

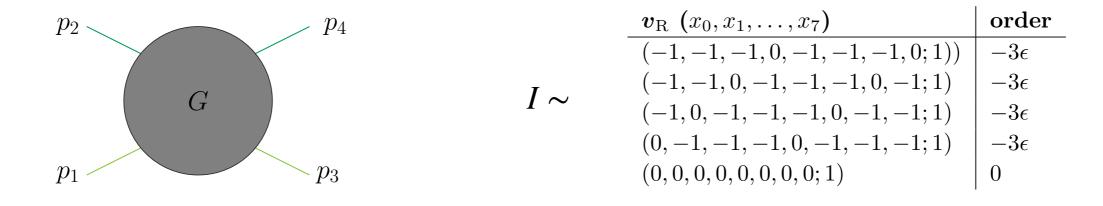
$$LP\{\mathcal{F}\}(L;\epsilon) = i\pi x^{-1-3\epsilon} \left(-\frac{8}{3\epsilon^4} + \frac{16}{\epsilon^3} + \frac{2(\pi^2 - 144)}{3\epsilon^2} - \frac{4(-58\zeta(3) + 3\pi^2 - 432)}{3\epsilon} \right)$$

$$+\frac{1}{60}\left(-27840\zeta(3)+71\pi^4+1440\pi^2-207360\right)+\cdots\right),$$

gives
$$\mathcal{I}(x;\epsilon) \sim x^{-1-3\epsilon}$$

Forward Scattering

Directly applying MoR in parameter space, no region with correct scaling...



After resolution, in some polytopes we now directly see the leading region observed in the analytic result!

Conclusion

Pinched Feynman Integrals

- Studied an integral with a *pinched* contour independent of kinematics
- Found a resolution procedure to remove the pinch
- Can obtain stable numerical results only after removing pinch

MoR

- Expect regions can appear due to cancelling monomials either generically or at particular kinematic points
- Have characterised some such regions for on-shell expansion and forward scattering @ 3-loops

Outlook

- General/automated procedure to resolve these pinches/cancellations?
- New ways to analyse/compute Feynman integrals?

Thank you for listening!

Backup

Sector Decomposition

Sector Decomposition in a Nutshell

$$I \sim \int_{\mathbb{R}^{N+1}} \left[d\mathbf{x} \right] \mathbf{x}^{\nu} \frac{\left[\mathcal{U}(\mathbf{x}) \right]^{N-(L+1)D/2}}{\left[\mathcal{F}(\mathbf{x}, \mathbf{s}) - i\delta \right]^{N-LD/2}} \delta(1 - H(\mathbf{x}))$$

Singularities

- 1. UV/IR singularities when some $x \to 0$ simultaneously \Longrightarrow Sector Decomposition
- 2. Thresholds when \mathscr{F} vanishes inside integration region $\implies i\delta$

Sector decomposition

Find a local change of coordinates for each singularity that factorises it (blow-up)

Sector Decomposition in a Nutshell

$$I \sim \int_{\mathbb{R}_{>0}^{N}} \left[d\mathbf{x} \right] \mathbf{x}^{\nu} \left(c_{i} \mathbf{x}^{\mathbf{r}_{i}} \right)^{t}$$

$$\mathcal{N}(I) = \text{convHull}(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots) = \bigcap_{f \in F} \left\{ \mathbf{m} \in \mathbb{R}^{N} \mid \langle \mathbf{m}, \mathbf{n}_{f} \rangle + a_{f} \geq 0 \right\}$$

Normal vectors incident to each extremal vertex define a local change of variables*

Kaneko, Ueda 10

$$x_i = \prod_{f \in S_j} y_f^{\langle \mathbf{n}_f, \mathbf{e}_i \rangle}$$

$$I \sim \sum_{\sigma \in \Delta_{\mathcal{N}}^T} |\sigma| \int_0^1 \left[\mathrm{d}\mathbf{y}_f \right] \prod_{f \in \sigma} y_f^{\langle \mathbf{n}_f, \boldsymbol{\nu} \rangle - ta_f} \left(c_i \prod_{f \in \sigma} y_f^{\langle \mathbf{n}_f, \mathbf{r}_i \rangle + a_f} \right)^t$$
Singularities Finite

*If $|S_j| > N$, need triangulation to define variables (simplicial normal cones $\sigma \in \Delta_{\mathcal{N}}^T$)

Sector Decomposition in a Nutshell

$$I = \underbrace{ \left(-1 + 2\varepsilon \right) \left(m^2 \right)^{1-2\varepsilon} \int_0^\infty \frac{\mathrm{d}x_1 \mathrm{d}x_2}{\left(x_1^1 x_2^0 + x_1^1 x_2^1 + x_1^0 x_2^1 \right)^{2-\varepsilon}} \cdot \mathbf{r}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \mathbf{r}_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \mathbf{r}_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$\mathcal{N}(I) = \mathbf{n}_1 = \begin{pmatrix} -1 \\ 0 \end{pmatrix} \mathbf{n}_2 = \begin{pmatrix} 0 \\ -1 \end{pmatrix} \mathbf{n}_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_1 = 1 \quad a_2 = 1 \quad a_3 = -1$$

For each vertex make the local change of variables

e.g.
$$\mathbf{r}_1$$
: $x_1 = y_1^{-1}y_3^1$, $x_2 = y_1^0y_3^1$, \mathbf{r}_2 : $x_1 = y_1^{-1}y_2^0$, $x_2 = y_1^0y_2^{-1}$, \mathbf{r}_3 : $x_1 = y_2^0y_3^1$, $x_2 = y_2^{-1}y_3^1$

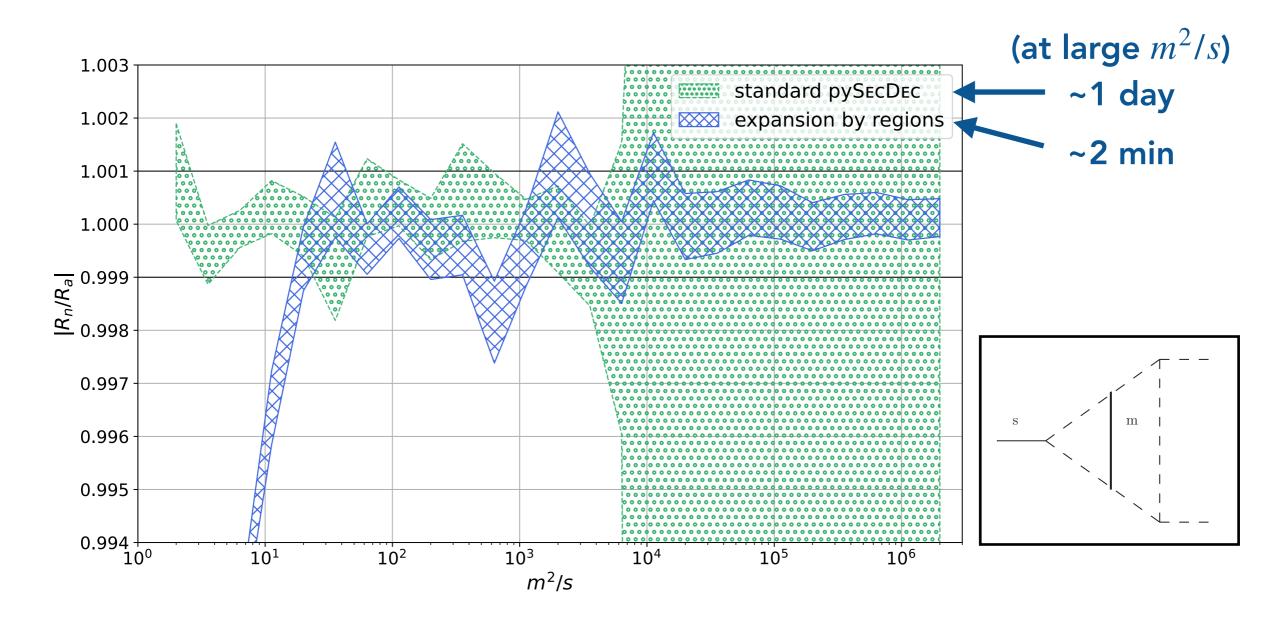
$$I = -\Gamma(-1+2\varepsilon) (m^2)^{1-2\varepsilon} \int_0^1 dy_1 dy_2 dy_3 \frac{y_1^{-\varepsilon} y_2^{-\varepsilon} y_3^{-1+\varepsilon}}{(y_1+y_2+y_3)^{2-\varepsilon}} [\delta(1-y_2) + \delta(1-y_3) + \delta(1-y_1)]$$

Schlenk 2016

Applications

Applying Expansion by Regions

Ratio of the finite $\mathcal{O}(\epsilon^0)$ piece of numerical result R_n to the analytic result R_a



For large ratio of scales (m^2/s) the EBR result is **faster** & **easier** to integrate

Additional Regulators

MoR subdivides $\mathcal{N}(I) \to {\mathcal{N}(I^R)} \Longrightarrow$ new (internal) facets $F^{\text{int.}}$

New facets can introduce spurious singularities not regulated by dim reg

Lee Pomeransky Representation:

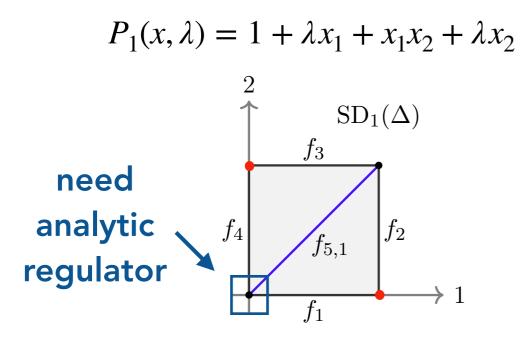
$$\mathcal{N}(I^{(R)}) = \bigcap_{f \in F} \left\{ \mathbf{m} \in \mathbb{R}^{N} \mid \langle \mathbf{m}, \mathbf{n}_{f} \rangle + a_{f} \geq 0 \right\}$$

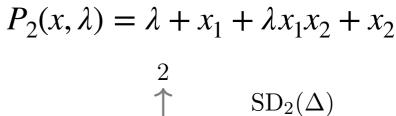
$$I \sim \sum_{\sigma \in \Delta_{\mathcal{N}}^{T}} |\sigma| \int_{\mathbb{R}^{N}_{>0}} \left[d\mathbf{y}_{f} \right] \prod_{f \in \sigma} y_{f}^{\langle \mathbf{n}_{f}, \boldsymbol{\nu} \rangle + \frac{D}{2} a_{f}} \left(c_{i} \prod_{f \in \sigma} y_{f}^{\langle \mathbf{n}_{f}, \mathbf{r}_{i} \rangle + a_{f}} \right)^{-\frac{D}{2}}$$

If $f \in F^{\text{int}}$ have $a_f = 0$ need analytic regulators $\nu \to \nu + \delta \nu$ Heinrich, Jahn, SJ, Kerner, Langer, Magerya, Põldaru, Schlenk, Villa 21; Schlenk 16

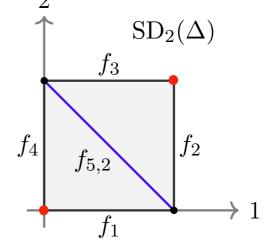
Additional Regulators (II)

Toy Example:





ok!

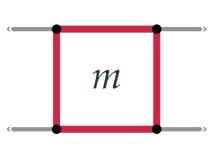


pySecDec can find the constraints on the analytic regulators for you

extra_regulator_constraints():

$$v_2 - v_4 \neq 0, \quad v_1 - v_3 \neq 0$$

suggested_extra_regulator_exponent():
$$\{\delta\nu_1,\delta\nu_2,\delta\nu_3,\delta\nu_4\}=\{0,\!0,\!\eta,-\eta\}$$



Small m expansion

Lee-Pomeransky and MoR

Building Bridges: LP ↔ Propagator Scaling

Region vectors in momentum space and Lee-Pomeransky space are related, we can see this using Schwinger parameters \tilde{x}_e

$$\frac{1}{D_n^{\nu_e}} = \frac{1}{\Gamma(\nu_e)} \int_0^\infty \frac{\mathrm{d}\tilde{x}_e}{\tilde{x}_e} \ \tilde{x}_e^{\nu_e} \ e^{-\tilde{x}_e D_e} \ \text{, with } x_e \propto \tilde{x}_e$$

$$(D_1^{-1},...,D_N^{-1}) \sim (\tilde{x}_1,...,\tilde{x}_N) \sim (x_1,...,x_N)$$

Example: 1-loop form factor

Hard:
$$(D_1^{-1}, D_2^{-1}, D_3^{-1}) \sim (\lambda^0, \lambda^0, \lambda^0),$$
 $(x_1, x_2, x_3) \sim (\lambda^0, \lambda^0, \lambda^0)$

Collinear to
$$p_1$$
: $(D_1^{-1}, D_2^{-1}, D_3^{-1}) \sim (\lambda^{-1}, \lambda^0, \lambda^{-1}), \qquad (x_1, x_2, x_3) \sim (\lambda^{-1}, \lambda^0, \lambda^{-1})$

Collinear to
$$p_2$$
: $(D_1^{-1}, D_2^{-1}, D_3^{-1}) \sim (\lambda^0, \lambda^{-1}, \lambda^{-1}), \qquad (x_1, x_2, x_3) \sim (\lambda^0, \lambda^{-1}, \lambda^{-1})$

Soft:
$$(D_1^{-1}, D_2^{-1}, D_3^{-1}) \sim (\lambda^{-1}, \lambda^{-1}, \lambda^{-2}), \qquad (x_1, x_2, x_3) \sim (\lambda^{-1}, \lambda^{-1}, \lambda^{-2})$$

Can connect the regions in mom. space with those we determine geometrically

Next step: automatically find (Sudakov decomposed) loop momentum scalings compatible with region vectors WIP w/ Yannick Ulrich

Building Bridges: Landau ↔ Regions

The Landau equations give the necessary conditions for an integral to diverge

1)
$$\alpha_e l_e^2(k, p, q) = 0 \quad \forall e \in G$$

2)
$$\frac{\partial}{\partial k_a^{\mu}} \mathcal{D}(k, p, q; \alpha) = \frac{\partial}{\partial k_a^{\mu}} \sum_{e \in G} \alpha_e \left(-l_e^2(k, p, q) - i\varepsilon \right) = 0 \qquad \forall a \in \{1, \dots, L\}$$

Solutions are pinched surfaces of the integral where IR divergences may arise

Idea is to explore the neighbourhood of a pinched surface, defined by

1)
$$\alpha_e l_e^2(k, p, q) \sim \lambda^p \quad \forall e \in G$$
, with $p \in \{1, 2\}$

2)
$$\frac{\partial}{\partial k_a^{\mu}} \mathcal{D}(k, p, q; \alpha) \lesssim \lambda^{1/2} \qquad \forall a \in \{1, ..., L\}$$

with the goal of further understanding the connection between

Solutions of the Landau equations ↔ Regions

Gardi, Herzog, Ma, Schlenk 22

Method of Regions (Details/Examples)

In Feynman parameter space, there is a **geometric method** for finding regions Pak, Smirnov 10

Each region will be defined by a **region vector v** = $(v_1, ..., v_N; 1)$, in each region we will perform a change of variables $x_i \to \lambda^{v_i} x_i$ and series expand about $\lambda = 0$

Let us start by considering some polynomial

$$P(\mathbf{x}, \lambda) = \sum_{i=1}^{m} c_i x_1^{r_{i,1}} \cdots x_N^{r_{i,N}} \lambda^{r_{i,N+1}}$$

 c_i - non-negative coefficients

 x_i - integration variables

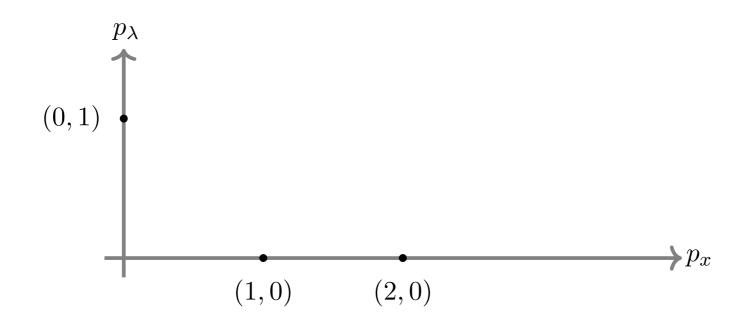
 λ - small parameter

$$\mathbf{r}_i = (r_{i,1}, ..., r_{i,N+1}) \in \mathbb{N}^{N+1}$$
 - exponent vectors

Ignoring, for now, the coefficients c_i we can introduce a simple but useful picture for such polynomials:

- For each variable x_i or λ draw an orthogonal axis
- For each monomial, draw a dot at position \mathbf{r}_i

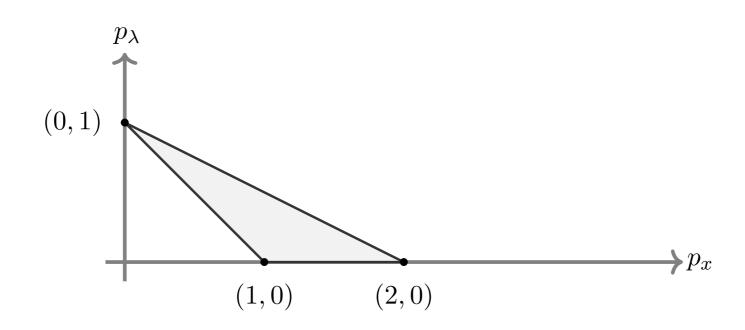
Example: $P(x, \lambda) = \lambda + x + x^2$ has exponent vectors $\mathbf{r}_1 = (0,1), \mathbf{r}_2 = (1,0), \mathbf{r}_3 = (2,0)$



We may define a **Newton polytope** of the polynomial, this is the convex hull of the exponent vectors:

$$\Delta = \text{convHull}(\mathbf{r}_1, \mathbf{r}_2, ...) = \left\{ \sum_{j} \alpha_j \mathbf{r}_j | \alpha_j \ge 0 \land \sum_{j} \alpha_j = 1 \right\}$$

Example: $P(x, \lambda) = \lambda + x + x^2$ has exponent vectors $\mathbf{r}_1 = (0,1), \mathbf{r}_2 = (1,0), \mathbf{r}_3 = (2,0)$



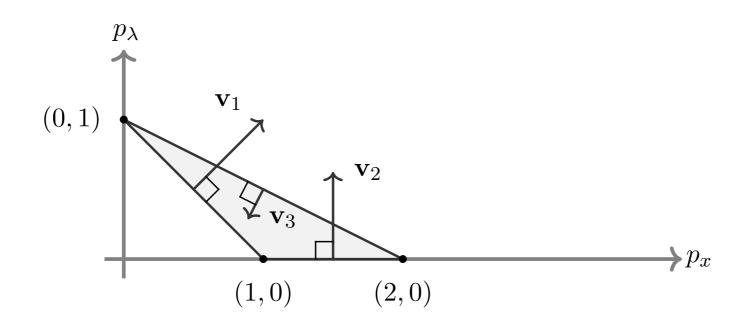
Alternatively, this polytope can also be described as the intersection of half spaces:

$$\Delta = \bigcap_{f \in F} \left\{ \mathbf{m} \in \mathbb{R}^{N+1} \mid \langle \mathbf{m}, \mathbf{v}_f \rangle + a_f \ge 0 \right\}$$

F - set of polytope facets, $a_f \in \mathbb{Z}$

 \mathbf{v}_f - inward-pointing normal vectors for each facet (co-dimension 1 face)

Several public tools exist for computing Newton polytopes/convex hulls and their representation in terms of facets exist, e.g. **Normaliz** and **Qhull**

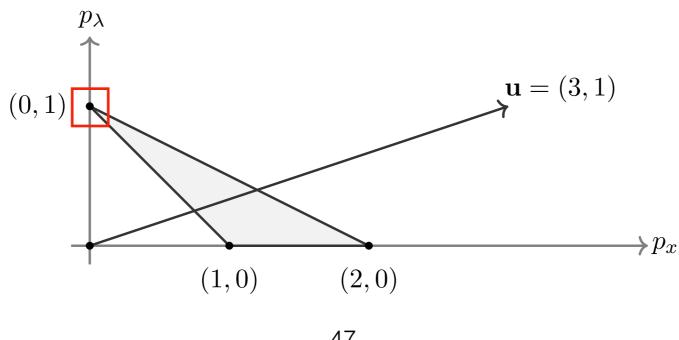


Next, let us define a vector \mathbf{u} such that $x_i = \lambda^{u_i}$ with $u_{N+1} = 1$ for each point \mathbf{x} in the integration domain, we can write:

$$P(\mathbf{u}, \lambda) = \sum_{i=1}^{m} c_i \lambda^{\langle \mathbf{r}_i, \mathbf{u} \rangle}$$

Since $\lambda \ll 1$, the largest term in the polynomial has the smallest $\langle \mathbf{r}_i, \mathbf{u} \rangle$ Note that we can have several points with the same projection on \mathbf{u} , i.e. we can have several largest terms

Example: $P(x, \lambda) = \lambda + x + x^2$ with $\mathbf{u} = (3,1)$ gives $P(\mathbf{u}, \lambda) = \lambda + \lambda^3 + \lambda^6$

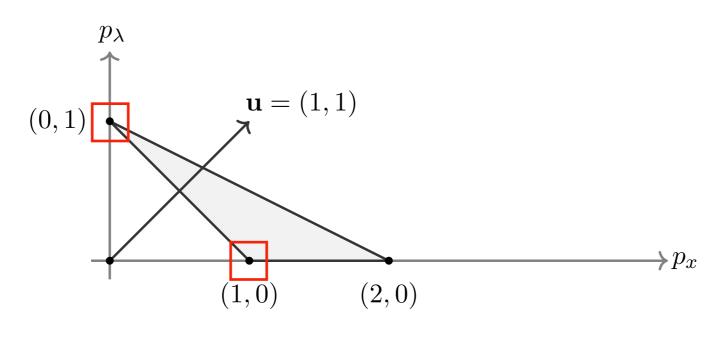


Next, let us define a vector \mathbf{u} such that $x_i = \lambda^{u_i}$ with $u_{N+1} = 1$ for each point \mathbf{x} in the integration domain, we can write:

$$P(\mathbf{u},\lambda) = \sum_{i=1}^{m} c_i \lambda^{\langle \mathbf{r}_i, \mathbf{u} \rangle}$$

Since $\lambda \ll 1$, the largest term in the polynomial has the smallest $\langle \mathbf{r}_i, \mathbf{u} \rangle$ Note that we can have several points with the same projection on \mathbf{u} , i.e. we can have several largest terms

Example: $P(x, \lambda) = \lambda + x + x^2$ with $\mathbf{u} = (1, 1)$ gives $P(\mathbf{u}, \lambda) = \lambda + \lambda + \lambda^2$



Expanding Regions

Rewrite our polynomial as: $P(\mathbf{x}) = Q(\mathbf{x}) + R(\mathbf{x})$

With $Q(\mathbf{x})$ defined such that it contains all of the lowest order terms in λ

The binomial expansion of

$$P(\mathbf{x})^m = Q(\mathbf{x})^m \left(1 + \frac{R(\mathbf{x})}{Q(\mathbf{x})}\right)^m$$
 converges for $\mathbf{x} = \lambda^{\mathbf{u}}$ if $R(\mathbf{x})/Q(\mathbf{x}) < 1$

Some observations:

- An expansion with region vector \mathbf{v} converges at a point \mathbf{u} if the terms with minimum $\langle \mathbf{r}_i, \mathbf{u} \rangle$ are contained in the terms with minimum $\langle \mathbf{r}_i, \mathbf{v} \rangle$
- For any ${\bf u}$ the vertices with the smallest $<{\bf r}_i,{\bf u}>$ must be part of some facet F
- Since $u_{N+1} > 0$, the lowest order terms for any ${\bf u}$ must lie on a facet whose inwards pointing normal vector has a positive (N+1)-th component, let us call the set of such facets F^+ or lower facets

Claim: regions are defined by vectors normal to the facets in F^+ , the integrand in each region consists of the monomials lying on the facet

Scaleless Integrals

Scaleless integrals seem to play quite an interesting role

Momentum space

In dimensional regularisation, scaleless integrals are 0

$$I(\{k_i\}_a, \{ck_i\}_b) = c^q I(\{k_i\}) \implies I(\{k_i\}) = 0, \quad \{k_i\} = \{k_i\}_a \cup \{k_i\}_b$$

Where $c \neq 1$ and $q \neq 0$ is some scaling dimension

Feynman parameter space

$$(\mathcal{UF})(c^{\mathbf{u}}\mathbf{x}) = c^{q}(\mathcal{UF})(\mathbf{x}), \quad \mathbf{u} \neq n\mathbf{1}, \quad n \in \mathbb{R}$$

Geometrical view

For Δ built from $\mathcal{U} + \mathcal{F}$

 $\dim(\Delta) = \dim(\mathbf{x}) \iff I \text{ scaleful}$ $\dim(\Delta) < \dim(\mathbf{x}) \iff I \text{ scaleless}$

Important consequences:

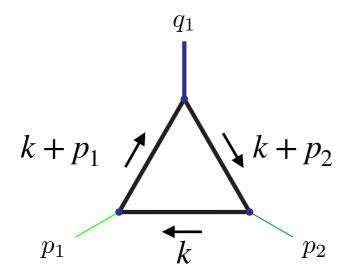
Faces of co-dimension > 1 are scaleless

"Region" vectors not normal to a facet give scaleless integrals

Overlap contributions i.e. rescaling by two region vectors, are scaleless

Triangle Example

Consider the on-shell limit $p_1^2 \sim p_2^2 \sim \lambda q_1^2$ for $\lambda \to 0$



$$I = i\pi^{D/2} \mu^{4-D} \int d^D k \frac{1}{(k+p_1)^2 (k+p_2)^2 (k^2)}$$

$$p_1 = (p_1^+, p_1^-, p_1^\perp) \sim Q(\lambda, 1, \lambda^{\frac{1}{2}})$$

$$p_2 \sim Q(1, \lambda, \lambda^{\frac{1}{2}})$$

1) Split integrand up into regions

Hard: $k_H^{\mu} \sim (1,1,1) Q$

Collinear to
$$p_1: k_{J_1}^{\mu} \sim (\lambda, 1, \lambda^{\frac{1}{2}}) Q$$

Collinear to
$$p_2: k_{J_2}^{\mu} \sim (1, \lambda, \lambda^{\frac{1}{2}}) Q$$

Soft:
$$k_S^{\mu} \sim (\lambda, \lambda, \lambda) Q$$

2) Series expand each region in λ

$$I_{H} = i\pi^{d/2} \mu^{4-D} \int d^{D}k \frac{1}{(k^{2} + 2k^{+} \cdot p_{1}^{-})(k^{2} + 2k^{-} \cdot p_{2}^{+})(k^{2})}$$

$$I_{C_{1}} = i\pi^{d/2} \mu^{4-D} \int d^{D}k \frac{1}{(k+p_{1})^{2}(2k^{-} \cdot p_{2}^{+})(k^{2})}$$

$$I_{C_{2}} = i\pi^{d/2} \mu^{4-D} \int d^{D}k \frac{1}{(2k^{-} \cdot p_{1}^{+})(k+p_{2})^{2}(k^{2})}$$

$$I_{S} = i\pi^{d/2} \mu^{4-D} \int d^{D}k \frac{1}{(2k^{+} \cdot p_{1}^{-} + p_{1}^{2})(2k^{-} \cdot p_{2}^{+} + p_{2}^{2})(k^{2})}$$

Analysis follows:

Becher, Broggio, Ferroglia 14

Triangle Example

3-5) Integrate each expansion over the whole integration domain, discard scaleless, sum

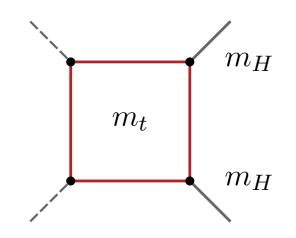
$$\begin{split} I_{H} &= \frac{\Gamma(1+\epsilon)}{Q^{2}} \left(\frac{1}{\epsilon^{2}} + \frac{1}{\epsilon} \ln \frac{\mu^{2}}{Q^{2}} + \frac{1}{2} \ln^{2} \frac{\mu^{2}}{Q^{2}} - \frac{\pi^{2}}{6} + \mathcal{O}(\lambda) \right) \\ I_{C_{1}} &= \frac{\Gamma(1+\epsilon)}{Q^{2}} \left(-\frac{1}{\epsilon^{2}} - \frac{1}{\epsilon} \ln \frac{\mu^{2}}{P_{1}^{2}} - \frac{1}{2} \ln^{2} \frac{\mu^{2}}{P_{1}^{2}} + \frac{\pi^{2}}{6} + \mathcal{O}(\lambda) \right) \\ I_{C_{2}} &= \frac{\Gamma(1+\epsilon)}{Q^{2}} \left(-\frac{1}{\epsilon^{2}} - \frac{1}{\epsilon} \ln \frac{\mu^{2}}{P_{2}^{2}} - \frac{1}{2} \ln^{2} \frac{\mu^{2}}{P_{2}^{2}} + \frac{\pi^{2}}{6} + \mathcal{O}(\lambda) \right) \\ I_{S} &= \frac{\Gamma(1+\epsilon)}{Q^{2}} \left(\frac{1}{\epsilon^{2}} + \frac{1}{\epsilon} \ln \frac{\mu^{2} Q^{2}}{P_{2}^{2} P_{1}^{2}} + \frac{1}{2} \ln^{2} \frac{\mu^{2} Q^{2}}{P_{2}^{2} P_{1}^{2}} + \frac{\pi^{2}}{6} + \mathcal{O}(\lambda) \right) \\ I &= I_{H} + I_{C_{1}} + I_{C_{2}} + I_{S} = \frac{1}{Q^{2}} \left(\ln \frac{Q^{2}}{P_{2}^{2}} \ln \frac{Q^{2}}{P_{1}^{2}} + \frac{\pi^{2}}{3} + \mathcal{O}(\lambda) \right) \end{split}$$

This reproduces the expected result, but why does this work (and does it always)?

- 1) How did we find all the regions?
- 2) Did we not double-count when integrating over the whole domain?

pySecDec: EBR Box Example

Example: 1-loop massive box expanded for small $m_t^2 \ll s$, |t|



Requires the use of analytic regulators

Can regulate spurious singularities by adjusting propagators powers

$$G_4 = \mu^{2\epsilon} \int_{-\infty}^{\infty} \frac{d^D k}{i \pi^{D/2}} \frac{1}{[k^2 - m_t^2]^{\delta_1} [(k + p_1)^2 - m_t^2]^{\delta_2} [(k + p_1 + p_2)^2 - m_t^2]^{\delta_3} [(k - p_4)^2 - m_t^2]^{\delta_4}}$$

Can keep $\delta_1, \ldots, \delta_4$ symbolic or $\delta_1 = 1 + n_1/2, \delta_2 = 1 + n_1/3, \ldots$ and take $n_1 \to 0^+$

Output region vectors:

$$\mathbf{v}_1 = (0,0,0,0,1)$$

 $\mathbf{v}_2 = (-1, -1,0,0,1)$
 $\mathbf{v}_3 = (0,0, -1, -1,1)$
 $\mathbf{v}_4 = (-1,0,0, -1,1)$
 $\mathbf{v}_5 = (0, -1, -1,0,1)$

Result:
$$s = 4.0$$
, $t = -2.82843$, $m_t^2 = 0.1$, $m_h^2 = 0$)
$$I = -1.30718 \pm 2.7 \cdot 10^{-6} + (1.85618 \pm 3.0 \cdot 10^{-6}) i$$

$$+ \mathcal{O}\left(\epsilon, n_1, \frac{m_t^2}{s}, \frac{m_t^2}{t}\right)$$

Transform the expression for the full integral:

$$F = \int_{k \in D_h} \operatorname{D}k I + \int_{k \in D_s} \operatorname{D}k T_i^{(h)} I + \sum_{j} \int_{k \in D_s} \operatorname{D}k T_j^{(s)} I$$

$$= \sum_{i} \left(\int_{k \in \mathbb{R}^d} \operatorname{D}k T_i^{(h)} I - \sum_{j} \int_{k \in D_s} \operatorname{D}k T_j^{(s)} T_i^{(h)} I \right) + \sum_{j} \left(\int_{k \in \mathbb{R}^d} \operatorname{D}k T_j^{(s)} I - \sum_{i} \int_{k \in D_h} \operatorname{D}k T_i^{(h)} T_j^{(s)} I \right)$$

The expansions commute:
$$T_i^{(h)}T_j^{(s)}I=T_j^{(s)}T_i^{(h)}I\equiv T_{i,j}^{(h,s)}I$$

$$\Rightarrow \text{ Identity: } F = \sum_{i} \int Dk \, T_{i}^{(h)} I + \sum_{j} \int Dk \, T_{j}^{(s)} I - \sum_{i,j} \int Dk \, T_{i,j}^{(h,s)} I$$

$$F^{(h)} \qquad F^{(s)}$$

All terms are integrated over the whole integration domain \mathbb{R}^d as prescribed for the expansion by regions \Rightarrow location of boundary Λ between D_h, D_s is irrelevant.

Slide from: Bernd Jantzen, High Precision for Hard Processes (HP2) 2012

The general formalism (details)

Identities as in the examples are generally valid, under some conditions.

Consider

- a (multiple) integral $F = \int Dk I$ over the domain D (e.g. $D = \mathbb{R}^d$),
- a set of N regions $R = \{x_1, \dots, x_N\}$,
- for each region $x \in R$ an expansion $T^{(x)} = \sum_j T_j^{(x)}$ which converges absolutely in the domain $D_x \subset D$.

Conditions

- $\bigcup_{x \in R} D_x = D$ $[D_x \cap D_{x'} = \emptyset \ \forall x \neq x'].$
- Some of the expansions commute with each other.

Let
$$R_{\rm c} = \{x_1, \dots, x_{N_{\rm c}}\}$$
 and $R_{\rm nc} = \{x_{N_{\rm c}+1}, \dots, x_N\}$ with $1 \le N_{\rm c} \le N$. Then: $T^{(x)}T^{(x')} = T^{(x')}T^{(x)} \equiv T^{(x,x')} \ \forall x \in R_{\rm c}, \ x' \in R$.

- Every pair of non-commuting expansions is invariant under some expansion from R_c : $\forall x_1', x_2' \in R_{nc}, x_1' \neq x_2', \exists x \in R_c : T^{(x)}T^{(x_2')}T^{(x_1')} = T^{(x_2')}T^{(x_1')}$.
- • ∃ regularization for singularities, e.g. dimensional (+ analytic) regularization.

 • All expanded integrals and series expansions in the formalism are well-defined.

Slide from: Bernd Jantzen, High Precision for Hard Processes (HP2) 2012

The general formalism (2)

Under these conditions, the following **identity** holds: $[F^{(x,...)} \equiv \sum_{i,...} \int Dk T_{i,...}^{(x,...)} I]$

$$\left[F^{(x,\dots)} \equiv \sum_{j,\dots} \int Dk \, T_{j,\dots}^{(x,\dots)} I\right]$$

$$F = \sum_{x \in R} F^{(x)} - \sum_{\{x'_1, x'_2\}}^{\langle R_c + 1 \rangle} F^{(x'_1, x'_2)} + \dots - (-1)^n \sum_{x' \in R} F^{(x'_1, \dots, x'_n)} + \dots + (-1)^{N_c} \sum_{x' \in R_{nc}} F^{(x', x_1, \dots, x_{N_c})}$$

where the sums run over subsets $\{x_1, \ldots\}$ containing at most one region from R_{nc} .

Comments

- This identity is exact when the expansions are summed to all orders. < Leading-order approximation for $F \rightsquigarrow$ dropping higher-order terms.
- It is independent of the regularization (dim. reg., analytic reg., cut-off, infinitesimal masses/off-shellness, ...) as long as all individual terms are well-defined.
- Usually regions & regularization are chosen such that multiple expansions $F^{(x'_1,...,x'_n)}$ $(n \ge 2)$ are scaleless and vanish. [\checkmark if each $F_0^{(x)}$ is a homogeneous function of the expansion parameter with unique scaling.]
- If $\exists F^{(x_1',x_2',\dots)} \neq 0 \leadsto \text{relevant overlap contributions} (\rightarrow \text{"zero-bin subtractions"}).$ They appear e.g. when avoiding analytic regularization in SCET. e.g. Manohar, Stewart '06; Chiu, Fuhrer, Hoang, Kelley, Manohar '09; ...

Slide from: Bernd Jantzen, High Precision for Hard Processes (HP2) 2012