Revealing Hidden Regions and Forward Scattering

Stephen Jones
IPPP Durham / Royal Society URF
Gardi, Herzog, Ma [To Appear]
Gardi, Herzog, Ma, Schlenk [2211.14845]
Heinrich, Jahn, Kerner, Langer, Magerya,
Olsson, Põldaru, Schlenk, Villa
[2108.10807, 2305.19768]

Outline

Introduction

Feynman \& Lee-Pomeransky representation
Method of Regions (MoR)
Hidden regions due to cancellation

Integrals with Pinch Singularities

Finding integrals with pinch singularities for generic kinematics
Evaluating such integrals in parameter space

MoR and Hidden Regions due to Cancellation
On-Shell \& Forward Scattering

Introduction

Parameter Space

Can exchange integrals over loop momenta for integrals over parameters

\mathscr{U}, \mathscr{F} homogeneous polynomials of degree L and $L+1$

Lee-Pomeransky Parametrisation

$$
\begin{aligned}
& I(s)=\frac{\Gamma(D / 2)}{\Gamma((L+1) D / 2-\nu) \prod_{e \in G} \Gamma\left(\nu_{e}\right)} \int_{0}^{\infty}[d x] x^{\nu}(\mathscr{G}(\mathbf{x}, s))^{-D / 2} \\
& \mathscr{G}(\mathbf{x} ; \boldsymbol{s})=\mathscr{U}(\mathbf{x})+\mathscr{F}(\mathbf{x} ; \boldsymbol{s})
\end{aligned}
$$

Lee, Pomeransky 13

Method of Regions

Consider expanding an integral about some limit:

$$
p_{i}^{2} \sim \lambda Q^{2}, p_{i} \cdot p_{j} \rightarrow \lambda Q^{2} \text { or } m^{2} \sim \lambda Q^{2} \text { for } \lambda \rightarrow 0
$$

Issue: integration and series expansion do not necessarily commute

Method of Regions

$$
I(\mathbf{s})=\sum_{R} I^{(R)}(\mathbf{s})=\sum_{R} T_{\mathbf{t}}^{(R)} I(\mathbf{s})
$$

1. Split integrand up into regions (R)
2. Series expand each region in λ
3. Integrate each expansion over the whole integration domain
4. Discard scaleless integrals ($=0$ in dimensional regularisation)
5. Sum over all regions

Smirnov 91; Beneke, Smirnov 97; Smirnov, Rakhmetov 99; Pak, Smirnov 11; Jantzen 2011; ...

Finding Regions

Assuming all c_{i} have the same sign we rescale $\boldsymbol{s} \rightarrow \lambda^{\omega} \boldsymbol{S} \mu^{s_{i} \rightarrow \lambda^{\omega \omega_{s_{i}}}}$

$$
I \sim \int_{\mathbb{R}_{>}^{N}}[\mathrm{~d} \boldsymbol{x}] \boldsymbol{x}^{\nu}\left(c_{i} \boldsymbol{x}^{\mathbf{r}_{i}}\right)^{t} \rightarrow \int_{\mathbb{R}_{>0}^{N}}[\mathrm{~d} \boldsymbol{x}] \boldsymbol{x}^{\nu}\left(c_{i} \boldsymbol{x}^{\mathbf{r}_{i}} \lambda^{r_{i, N+1}}\right)^{t} \rightarrow \mathcal{N}^{N+1}
$$

Normal vectors w/ positive λ component define change of variables $\mathbf{n}_{f}=\left(v_{1}, \ldots, v_{N}, 1\right)$

$$
\boldsymbol{x}=\lambda^{\mathbf{n}_{f}} \mathbf{y}, \quad \lambda \rightarrow \lambda \quad \begin{aligned}
& \text { Pak, Smirnov 10; Semenova, } \\
& \\
& \text { A. Smirnov, V. Smirnov } 18
\end{aligned}
$$

Example

$p(x, \lambda)=\lambda+x+x^{2}$

Original integral I may then be approximated as $I=\sum_{f \in F^{+}} I^{(f)}+\ldots$

Regions due to Cancellation

What happens if c_{i} have different signs?
Consider a 1-loop massive bubble at threshold $y=m^{2}-q^{2} / 4 \rightarrow 0$

$$
\begin{gathered}
I=\Gamma(\epsilon) \int d \alpha_{1} d \alpha_{2} \frac{\delta\left(1-\alpha_{1}-\alpha_{2}\right)\left(\alpha_{1}+\alpha_{2}\right)^{-2+2 \epsilon}}{\left(\mathscr{F}_{\text {bub }}\left(\alpha_{1}, \alpha_{2} ; q^{2}, y\right)\right)^{\epsilon}} \\
\mathscr{F}_{\text {bub }}=\frac{q^{2}}{4}\left(\alpha_{1}-\alpha_{2}\right)^{2}+y\left(\alpha_{1}+\alpha_{2}\right)^{2}
\end{gathered}
$$

Can split integral into two subdomains $\alpha_{1} \leq \alpha_{2}$ and $\alpha_{2} \leq \alpha_{1}$ then remap

$$
\begin{aligned}
& \alpha_{1}=\alpha_{1}^{\prime} / 2 \\
& \alpha_{2}=\alpha_{2}^{\prime}+\alpha_{1}^{\prime} / 2
\end{aligned}: \mathscr{F}_{\text {bub, } 1} \rightarrow \frac{q^{2}}{4} \alpha_{2}^{\prime 2}+y\left(\alpha_{1}^{\prime}+\alpha_{2}^{\prime}\right)^{2} \quad \text { (for first domain) }
$$

Jantzen, A. Smirnov, V. Smirnov 12
Before split: only hard region found ($\alpha_{1} \sim y^{0}, \alpha_{2} \sim y^{0}$)
After split: also potential region found ($\alpha_{1} \sim y^{0}, \alpha_{2} \sim y^{1 / 2}$)

Regions due to Cancellation

Various tools attempt to find such re-mappings using linear changes of variables

ASY/FIESTA Jantzen, A. Smirnov, V. Smirnov 12
Check all pairs of variables $\left(\alpha_{1}, \alpha_{2}\right)$ which are part of monomials of opposite sign
For each pair, try to build linear combination $\alpha_{1} \rightarrow b \alpha_{1}^{\prime}, \alpha_{2} \rightarrow \alpha_{2}^{\prime}+b \alpha_{1}^{\prime}$ s.t negative monomial vanishes

Repeat until all negative monomials vanish or warn user
ASPIRE Ananthanarayan, Pal, Ramanan, Sarkar 18; B. Ananthanarayan, Das, Sarkar 20
Consider Gröbner basis of $\left\{\mathscr{F}, \partial \mathscr{F} / \alpha_{1}, \partial \mathscr{F} / \alpha_{2}, \ldots\right\}$ (i.e. \mathscr{F} and Landau equations)
Eliminate negative monomials with linear transformations $\alpha_{1} \rightarrow b \alpha_{1}^{\prime}, \alpha_{2} \rightarrow \alpha_{2}^{\prime}+b \alpha_{1}^{\prime}$

This is not enough to straightforwardly expose all regions in parameter space

Integrals with Pinch Singularities

Landau Equations

Polynomials \mathscr{U}, \mathscr{F} can vanish (gives singularities) for some $\alpha_{i} \rightarrow 0$ (end-point)
Additionally, due to signs in \mathscr{F} it can vanish due to cancellation of terms
Avoid poles on real axis by deforming contour (roughly speaking...):

$$
\begin{gathered}
\alpha_{k} \rightarrow \alpha_{k}-i \varepsilon_{k}(\boldsymbol{\alpha}) \\
\mathscr{F}(\boldsymbol{\alpha} ; \boldsymbol{s}) \rightarrow \mathscr{F}(\boldsymbol{\alpha} ; \boldsymbol{s})-i \sum_{k} \varepsilon_{k} \frac{\partial \mathscr{F}(\boldsymbol{\alpha} ; \boldsymbol{s})}{\partial \alpha_{k}}+\mathcal{O}\left(\varepsilon^{2}\right)
\end{gathered}
$$

If $\mathscr{F}(\boldsymbol{\alpha} ; \mathbf{s})=0$ and $\partial \mathscr{F}(\boldsymbol{\alpha} ; \mathbf{s}) / \partial \alpha_{j}=0 \forall j$ simultaneously, contour will vanish exactly where the deformation is required, above conditions are just the Landau equations

Landau Equations (parameter space):

$$
\begin{array}{ll}
\text { 1) } & \mathscr{F}(\boldsymbol{\alpha} ; \mathbf{s})=0 \\
\text { 2) } & \alpha_{j} \frac{\partial \mathscr{F}(\boldsymbol{\alpha} ; \mathbf{s})}{\partial \alpha_{j}}=0 \quad \forall j
\end{array}
$$

Leading: $\alpha_{j} \neq 0 \forall j$
Solutions are pinched surfaces of the integral where IR divergences may arise

Looking for Trouble: Algorithm

Generally, solutions of the Landau equations depend on \mathbf{s}.
Let us restrict our search to solutions with generic kinematics

$$
\begin{aligned}
\mathscr{F} & =-\sum_{i} s_{i}\left[f_{i}(\boldsymbol{\alpha})-g_{i}(\boldsymbol{\alpha})\right]=\sum_{i} \mathscr{F}_{i,-}+\mathscr{F}_{i,+} \\
\mathscr{F}_{i,-} & =-s_{i} f_{i}(\boldsymbol{\alpha}), \quad \mathscr{F}_{i,+}=s_{i} g_{i}(\boldsymbol{\alpha}), \quad f_{i}(\boldsymbol{\alpha}), g_{i}(\boldsymbol{\alpha}) \geq 0
\end{aligned}
$$

Algorithm (finds integrals which potentially have a pinch for massless case)
For each s_{i} :

1) Compute $\mathscr{F}_{i,-}, \mathscr{F}_{i,+}$
2) If $\mathscr{F}_{i,-}=0$ or $\mathscr{F}_{i,+}=0 \rightarrow$ Exit (no cancellation)
3) If $\partial \mathscr{F}_{i,-} / \partial \alpha_{j}=0$ or $\partial \mathscr{F}_{i,+} / \partial \alpha_{j}=0$ set $\alpha_{j}=0 \rightarrow$ Goto 1

Else \rightarrow Exit (potential cancellation)
Much more sophisticated algorithms for solving Landau equations exist
(E.g.) Mizera, Simon Telen 21; Fevola, Mizera, Telen 23
(See also) Gambuti, Kosower, Novichkov, Tancredi 23

Looking for Trouble: 1- \& 2-loops

We considered massless 4-point scattering amplitudes ($s_{23}=-s_{12}-s_{13}$)
@1-loop: found no candidates (trivially)
@2-loop:

$+\ldots$ no candidates (!)

Looking for Trouble: 3-loops

@3-loop: finally some interesting candidates

The complete set of corresponding master integrals for generic s_{12}, s_{13} are known Henn, Mistlberger, Smirnov, Wasser 20; Bargiela, Caola, von Manteuffel, Tancredi 21;

Interesting Example

$$
\begin{aligned}
= & \int_{0}^{\infty} \mathrm{d} x_{0} \ldots \mathrm{~d} x_{7} \frac{\mathscr{U}(\mathbf{x})^{4 \epsilon}}{\mathscr{F}(\mathbf{x} ; \mathbf{s})^{2+3 \epsilon}} \delta\left(1-x_{7}\right) \\
& \mathscr{U}(\alpha)=\alpha_{0} \alpha_{2} \alpha_{4}+\alpha_{0} \alpha_{2} \alpha_{5}+\alpha_{0} \alpha_{2} \alpha_{6}+(29 \text { terms })
\end{aligned}
$$

$$
\begin{aligned}
\mathscr{F}(\boldsymbol{\alpha} ; \mathbf{s}) & =-s_{12}\left(\alpha_{1} \alpha_{4}-\alpha_{0} \alpha_{5}\right)\left(\alpha_{3} \alpha_{6}-\alpha_{2} \alpha_{7}\right)-s_{13}\left(\alpha_{1} \alpha_{2}-\alpha_{0} \alpha_{3}\right)\left(\alpha_{5} \alpha_{6}-\alpha_{4} \alpha_{7}\right), \\
\frac{\partial \mathscr{F}(\boldsymbol{\alpha} ; \mathbf{s})}{\partial \alpha_{0}} & =s_{12} \alpha_{5}\left(\alpha_{3} \alpha_{6}-\alpha_{2} \alpha_{7}\right)+s_{13} \alpha_{3}\left(\alpha_{5} \alpha_{6}-\alpha_{4} \alpha_{7}\right), \\
& \vdots \\
\frac{\partial \mathscr{F}(\boldsymbol{\alpha} ; \mathbf{s})}{\partial \alpha_{7}} & =s_{12} \alpha_{2}\left(\alpha_{1} \alpha_{4}-\alpha_{0} \alpha_{5}\right)+s_{13} \alpha_{4}\left(\alpha_{1} \alpha_{2}-\alpha_{0} \alpha_{3}\right)
\end{aligned}
$$

Can have a leading Landau singularity with generic kinematics (arbitrary s_{12}, s_{13}) when each factor of \mathscr{F} vanishes!

Interesting Example

Let's try to compute this with sector decomposition (pySecDec)

Fails to find contour...

Contour Deformation

Feynman integral (after sector decomp):

$$
I \sim \int_{0}^{1}[\mathrm{~d} \boldsymbol{\alpha}] \boldsymbol{\alpha}^{\nu} \frac{[\mathscr{U}(\boldsymbol{\alpha})]^{N-(L+1) D / 2}}{[\mathscr{F}(\boldsymbol{\alpha} ; \mathbf{s})]^{N-L D / 2}}
$$

Deform integration contour to avoid poles on real axis
Feynman prescription $\mathscr{F} \rightarrow \mathscr{F}-i \delta$ tells us how to do this
Expand $\mathscr{F}(z=\boldsymbol{\alpha}-i \boldsymbol{\tau})$ around $\boldsymbol{\alpha}, \quad \mathscr{F}(\boldsymbol{z})=\mathscr{F}(\boldsymbol{\alpha})-i \sum_{j} \tau_{j} \frac{\partial \mathscr{F}(\boldsymbol{\alpha})}{\partial \alpha_{j}}+\mathcal{O}\left(\tau^{2}\right)$
Choose $\tau_{j}=\lambda_{j} \alpha_{j}\left(1-\alpha_{j}\right) \frac{\partial \mathscr{F}(\boldsymbol{\alpha})}{\partial \alpha_{j}}$ with small constants $\lambda_{j}>0$
Soper 99; Binoth, Guillet, Heinrich, Pilon, Schubert 05; Nagy, Soper 06; Anastasiou, Beerli, Daleo 07, 08;
Beerli 08; Borowka, Carter, Heinrich 12; Borowka 14;...

Contour Deformation

But for this class of examples $\mathscr{F}(\boldsymbol{\alpha})$ and all $\partial \mathscr{F}(\boldsymbol{\alpha}) / \partial \alpha_{i}$ vanish at the same point inside the integration domain
\rightarrow pinch singularity

Example

$$
\begin{gathered}
\mathscr{F}(\boldsymbol{\alpha} ; \mathbf{s})=-s_{12}\left(\alpha_{1} \alpha_{4}-\alpha_{0} \alpha_{5}\right)\left(\alpha_{3} \alpha_{6}-\alpha_{2} \alpha_{7}\right)-s_{13}\left(\alpha_{1} \alpha_{2}-\alpha_{0} \alpha_{3}\right)\left(\alpha_{5} \alpha_{6}-\alpha_{4} \alpha_{7}\right), \\
\frac{\partial \mathscr{F}(\boldsymbol{\alpha} ; \mathbf{s})}{\partial \alpha_{0}}=s_{12} \alpha_{5}\left(\alpha_{3} \alpha_{6}-\alpha_{2} \alpha_{7}\right)+s_{13} \alpha_{3}\left(\alpha_{5} \alpha_{6}-\alpha_{4} \alpha_{7}\right), \\
\vdots \\
\frac{\partial \mathscr{F}(\boldsymbol{\alpha} ; \mathbf{s})}{\partial \alpha_{7}}=s_{12} \alpha_{2}\left(\alpha_{1} \alpha_{4}-\alpha_{0} \alpha_{5}\right)+s_{13} \alpha_{4}\left(\alpha_{1} \alpha_{2}-\alpha_{0} \alpha_{3}\right) \\
\\
\text { vanish for } \\
\alpha_{2}=\frac{\alpha_{0} \alpha_{3}}{\alpha_{1}}, \quad \alpha_{4}=\frac{\alpha_{0} \alpha_{5}}{\alpha_{1}}, \quad \alpha_{6}=\frac{\alpha_{0} \alpha_{7}}{\alpha_{1}} .
\end{gathered}
$$

Resolution

The problem is that we have monomials with different signs...

Asy2.1 PreResolve->True

```
MACTHXJONES:fiesta sj$ cat diagram2636.m
Get["asy2.1.m"];
Print["Diagram2636"];
result = AlphaRepExpand[{k1,k2,k3}, {k1^2, k2^2,k3^2, (k1+p1)^2, (k2+p2)^2, (k3+p3)^2,
(k1+k2+k3)^2, (k1+k2+k3+p1+p2+p3)^2}, {p1^2->0, p2^2->0, p3^2->0, p1*p2->s12/2, p1*p3->
s13/2, p2*p3->-s12/2-s13/2}, {s12 -> 1, s13 -> -1/5}, PreResolve->True] (* 3-loop box *
Print[result];
Print["=========="];
Exit[];
MACTHXJONES:fiesta sj$ wolframscript -file diagram2636.m
Diagram2636
Asy2.1
Variables for UF: {k1, k2, k3, p1, p2, p3}
WARNING: preresolution failed
{}
MACTHXJONES:fiesta sj$
```

Correctly identifies that iterated linear changes of variables are not sufficient to resolve the singularity and reports that pre-resolution has failed

Resolution

1) Rescale parameters to linearise singular surfaces

$$
\begin{gathered}
\mathscr{F}(\boldsymbol{\alpha} ; \mathbf{s})=-s_{12}\left(\alpha_{1} \alpha_{4}-\alpha_{0} \alpha_{5}\right)\left(\alpha_{3} \alpha_{6}-\alpha_{2} \alpha_{7}\right)-s_{13}\left(\alpha_{1} \alpha_{2}-\alpha_{0} \alpha_{3}\right)\left(\alpha_{5} \alpha_{6}-\alpha_{4} \alpha_{7}\right) \\
\alpha_{0} \rightarrow \alpha_{0} \alpha_{1}, \alpha_{2} \rightarrow \alpha_{2} \alpha_{3}, \alpha_{4} \rightarrow \alpha_{4} \alpha_{5}, \alpha_{6} \rightarrow \alpha_{6} \alpha_{7} \\
\mathscr{F}(\boldsymbol{\alpha} ; \mathbf{s})=\alpha_{1} \alpha_{3} \alpha_{5} \alpha_{7}\left[-s_{12}\left(\alpha_{4}-\alpha_{0}\right)\left(\alpha_{6}-\alpha_{2}\right)-s_{13}\left(\alpha_{2}-\alpha_{0}\right)\left(\alpha_{6}-\alpha_{4}\right)\right]
\end{gathered}
$$

2) Split the integral by imposing $\alpha_{i} \geq \alpha_{j} \geq \alpha_{k} \geq \alpha_{l}$

$$
\begin{aligned}
& \alpha_{0} \rightarrow \alpha_{0}+\alpha_{2}+\alpha_{4}+\alpha_{6}, \\
& \alpha_{2} \rightarrow \alpha_{2}+\alpha_{4}+\alpha_{6}, \\
& \alpha_{4} \rightarrow \alpha_{4}+\alpha_{6}, \\
& \alpha_{6} \rightarrow \alpha_{6}
\end{aligned}
$$

$$
\begin{aligned}
& \mathscr{F}_{1}(\boldsymbol{\alpha} ; \mathbf{s})=\alpha_{1} \alpha_{3} \alpha_{5} \alpha_{7}\left[-s_{12}\left(\alpha_{0}+\alpha_{2}\right)\left(\alpha_{2}+\alpha_{4}\right)-s_{13}\left(\alpha_{0}\right)\left(\alpha_{4}\right)\right] \\
& \mathscr{F}_{2}(\boldsymbol{\alpha} ; \mathbf{s})=\alpha_{1} \alpha_{3} \alpha_{5} \alpha_{7}\left[-s_{12}\left(\alpha_{2}\right)\left(\alpha_{0}+\alpha_{2}+\alpha_{6}\right)+s_{13}\left(\alpha_{0}\right)\left(\alpha_{6}\right)\right]
\end{aligned}
$$

$$
\vdots
$$

$$
\mathscr{F}_{24}(\boldsymbol{\alpha} ; \mathbf{s})=\alpha_{1} \alpha_{3} \alpha_{5} \alpha_{7}\left[-s_{12}\left(\alpha_{2}+\alpha_{4}\right)\left(\alpha_{4}+\alpha_{6}\right)-s_{13}\left(\alpha_{2}\right)\left(\alpha_{6}\right)\right]
$$

All coefficients of s_{12}, s_{13} now have definite sign

Result

Can now obtain results numerically ($s_{12}=1, s_{13}=-1 / 5$)

$$
\begin{aligned}
& I_{1}=\epsilon^{-4}\left[(-3.8842800687+5.2359902003 j) \pm\left(4.458 \cdot 10^{-6}+3.638 \cdot 10^{-6} j\right)\right]+\ldots \\
& I_{2}=\epsilon^{-4}\left[(-7.9291803033+20.943767810 j) \pm\left(9.149 \cdot 10^{-5}+1.061 \cdot 10^{-4} j\right)\right]+\ldots \\
& I_{3}=\epsilon^{-4}\left[(18.5195704502-15.707988011 j) \pm\left(5.897 \cdot 10^{-5}+5.897 \cdot 10^{-5} j\right)\right]+\ldots \\
& I_{4}=\epsilon^{-4}\left[(-13.294034089) \pm\left(2.068 \cdot 10^{-5}\right)\right]+\ldots \\
& I_{5}=\epsilon^{-4}\left[(12.7432949988-23.561968275 j) \pm\left(1.605 \cdot 10^{-5}+1.415 \cdot 10^{-5} j\right)\right]+\ldots \\
& I_{6}=\epsilon^{-4}\left[(-4.0702330904) \pm\left(2.018 \cdot 10^{-6}\right)\right]+\ldots
\end{aligned}
$$

Agrees with analytic result

$$
\begin{aligned}
I & =4\left(I_{1}+I_{2}+I_{3}+I_{4}+I_{5}+I_{6}\right) \\
& =\epsilon^{-4}[8.34055-52.3608 j]+\mathcal{O}\left(\epsilon^{-3}\right) \\
I_{\text {analytic }} & =\epsilon^{-4}[8.3400403922-52.3598775598 j]+\mathcal{O}\left(\epsilon^{-3}\right)
\end{aligned}
$$

Note: even after resolution this integral is slow to compute numerically, possible to vastly improve performance by avoiding contour deformation entirely
\rightarrow See talk of Tom Stone

MoR and Hidden Regions

On-Shell Expansion

On-shell expansion provides a way to explore emergence of IR singularities starting from an object free of IR singularities (off-shell Green's function)

Consider an arbitrary loop, $(K+L)$-leg wide-angle scattering graph

Cancellations of the type just observed lead to new regions that are hidden in the straightforward Newton polytope approach as they do not originate from an end-point singularity

On-Shell Expansion

Consider a collinear/jet configuration $p_{i}^{2}=\lambda Q^{2}, \quad p_{i} \cdot v_{i} \sim \lambda Q, \quad p_{i} \cdot \bar{v}_{i} \sim Q, \quad p_{i} \cdot v_{i \perp} \sim \sqrt{\lambda} Q$

Let us introduce a fourth (extra) loop momentum and consider the mode with all k_{i} collinear to p_{i} $k_{i}^{\mu}=Q\left(\xi_{i} v_{i}^{\mu}+\lambda \kappa_{i} \bar{v}_{i}^{\mu}+\sqrt{\lambda} \tau_{i} u_{i}^{\mu}+\sqrt{\lambda} \nu_{i} n^{\mu}\right)$

Botts, Sterman 89
Momentum conservation at H_{1} vertex ($k_{1}+k_{2}=k_{3}+k_{4}$) implies not all ξ_{i} are independent:
$\xi_{2}=\xi_{1}-\frac{1}{2} \sqrt{\lambda} \cos ^{2}(\theta)\left(\tan \left(\frac{\theta}{2}\right) \Delta \tau-\cot \left(\frac{\theta}{2}\right) \Sigma \tau\right)+\lambda\left(\kappa_{2}-\kappa_{1}\right)$,
$\xi_{3}=\xi_{1}+\frac{1}{2} \sqrt{\lambda} \tan \left(\frac{\theta}{2}\right) \Delta \tau+\lambda\left(\kappa_{2}-\kappa_{4}\right)$,
$\begin{array}{ll}\xi_{4}=\xi_{1}-\frac{1}{2} \sqrt{\lambda} \cot \left(\frac{\theta}{2}\right) \Sigma \tau+\lambda\left(\kappa_{2}-\kappa_{3}\right) . & \Delta \tau \equiv \tau_{1}+\tau_{2}-\tau_{3}-\tau_{4} \\ \Sigma \tau & =\tau_{1}+\tau_{2}+\tau_{3}+\tau_{4}\end{array}$

On-Shell Expansion

Now let us analyse the leading behaviour of this integrand for small λ,

1) Loop measure can be expressed as $\int d^{D} k_{1} d^{D} k_{2} d^{D} k_{3}=Q^{3 D} \int \prod_{i=1}^{3} d \xi_{i} d k_{i} d \tau_{i} d \nu_{i}$
2) Trade large components of k_{2}, k_{3} for small components of k_{4}, $\left\{\xi_{2}, \xi_{3}\right\} \rightarrow\left\{\kappa_{4}, \tau_{4}\right\}$ Jacobian of transformation: $\operatorname{det}\left(\frac{\partial\left(\xi_{2}, \xi_{3}\right)}{\partial\left(\kappa_{4}, \tau_{4}\right)}\right)=\lambda^{3 / 2} \cos (\theta) \cot (\theta)$

Overall obtain the following scaling:
$\int \prod_{i=1}^{3} d \xi_{i} d \kappa_{i} d \tau_{i} d \nu_{i} \sim \int_{0}^{1} d \xi_{1} \underbrace{\left(\int \prod_{i=1}^{3}\left(\lambda d \kappa_{i}\right)\left(\lambda^{\frac{1}{2}} d \tau_{i}\right)\left(\lambda^{\frac{1}{2}} d \nu_{i}\right)^{1-2 \epsilon}\right) \int d \kappa_{4} d \tau_{4} \underbrace{\operatorname{det}\left(\frac{\partial\left(\xi_{2}, \xi_{3}\right)}{\partial\left(\kappa_{4}, \tau_{4}\right)}\right)}_{\lambda^{3 / 2}}}_{\lambda^{6-3 \epsilon}}$

Expect this region to scale as $\mu=6-3 \epsilon+\frac{3}{2}-8=-\frac{1}{2}-3 \epsilon$
Scaling of collinear propagators

On-Shell Expansion

Directly applying MoR in parameter space, we do not see this region...

Dissecting the polytope according to our resolution procedure eliminates monomials of different sign, we now see the region in each of the 24 new polytopes

$$
\begin{array}{|l|l|l|}
\boldsymbol{v}_{\mathrm{R}}\left(y_{0}, x_{1}, y_{2}, x_{3}, y_{4}, x_{5}, y_{6}, x_{7}\right) & \boldsymbol{v}_{\mathrm{R}}\left(x_{0}, x_{1}, \ldots, x_{7}\right) & \text { order } \\
\hline(1 / 2,-1,1 / 2,-1,1 / 2,-1,0,-1 ; 1) & (-2,-2,-2,-2,-2,-2,-2,-2 ; 2) & -1 / 2-3 \epsilon \\
\hline(0,-1,1,-1,1,-1,0,-1 ; 1) & (-1,-1,-1,-1,-1,-1,-1,-1 ; 1) & -3 \epsilon \\
(1,-1,1,-1,0,-1,0,-1 ; 1) & (-1,-1,-1,-1,-1,-1,-1,-1 ; 1) & -3 \epsilon \\
(-1,-1,-1,-1,-1,-1,-1,-1 ; 1) & (-2,-1,-2,-1,-2,-1,-2,-1 ; 1) & -6 \epsilon \\
(1,-2,1,-2,1,-2,1,-2 ; 1) & (-1,-2,-1,-2,-1,-2,-1,-2 ; 1) & -6 \epsilon \\
(0,-1,0,0,0,0,0,0 ; 1) & (-1,-1,0,0,0,0,0,0 ; 1) & -\epsilon \epsilon \\
(0,0,0,0,0,0,0,0 ; 1) & (0,0,0,0,0,0,0,0 ; 1) & 0
\end{array}
$$

On-Shell Expansion

Use MoR on each of the split integrals I_{1}, \ldots, I_{24} and summing only the leading region for each split (with $\mu=-1 / 2-3 \epsilon$)

See strong numerical evidence that the split integrals (MoR) reproduce the leading behaviour of the full integral in the limit $p_{1}^{2} \rightarrow 0$

Forward Scattering

Inserting $\theta \sim \sqrt{\lambda}$ into the Botts-Sterman analysis leads to one of the loop momenta becoming Glauber:

$$
k_{4}^{\mu}-k_{2}^{\mu}=k_{1}^{\mu}-k_{3}^{\mu} \sim Q(\lambda, \lambda ; \sqrt{\lambda})
$$

We obtain $\mu=-1-3 \epsilon$
Alternatively, can expand known analytic result in the foward limit $x=-s_{13} / s_{12}$ Henn, Mistlberger, Smirnov, Wasser 20; Bargiela, Caola, von Manteuffel, Tancredi 21;

$$
\begin{aligned}
& I\left(s_{12}, s_{13} ; \epsilon\right)=s_{12}^{-2-3 \epsilon} \mathcal{F}(x ; \epsilon), \quad \mathscr{J}(x ; \epsilon) \sum_{n=-4}^{\infty} \mathscr{J}^{(n)}(x) \epsilon^{n}=\sum_{n=-4}^{\infty} \sum_{k=-1}^{\infty} \mathscr{J}^{(n, k)}(L) x^{k} \epsilon^{n} 4 \cdots L=\log (x) \\
& \mathscr{I}(x ; \epsilon)=\operatorname{LP}\left\{I_{\mathrm{XX}}\right\}(L ; \epsilon)+\mathcal{O}\left(x^{0}\right) \\
& \operatorname{LP}\{\mathscr{F}\}(L ; \epsilon)=i \pi x^{-1-3 \epsilon}\left(-\frac{8}{3 \epsilon^{4}}+\frac{16}{\epsilon^{3}}+\frac{2\left(\pi^{2}-144\right)}{3 \epsilon^{2}}-\frac{4\left(-58 \zeta(3)+3 \pi^{2}-432\right)}{3 \epsilon}\right. \\
& \left.\quad+\frac{1}{60}\left(-27840 \zeta(3)+71 \pi^{4}+1440 \pi^{2}-207360\right)+\cdots\right)
\end{aligned}
$$

gives $\mathscr{J}(x ; \epsilon) \sim x^{-1-3 \epsilon}$

Forward Scattering

Directly applying MoR in parameter space, no region with correct scaling...

After resolution, in some polytopes we now directly see the leading region observed in the analytic result!

$$
I_{1} \sim \quad \begin{array}{l|l|l|}
\boldsymbol{v}_{\mathrm{R}}\left(y_{0}, x_{1}, y_{2}, x_{3}, y_{4}, x_{5}, y_{6}, x_{7}\right) & \boldsymbol{v}_{\mathrm{R}}\left(x_{0}, x_{1}, \ldots, x_{7}\right) & \text { order } \\
\hline(0,-1,0,-1,0,-1,1,-1 ; 1) & (-1,-1,-1,-1,-1,-1,-1,-1 ; 1) & -1-3 \epsilon \\
\hline(1,-1,0,-1,0,-1,0,-1 ; 1) & (-1,-1,-1,-1,-1,-1,-1,-1 ; 1) & -1-3 \epsilon \\
(-1,0,0,-1,-1,0,0,-1 ; 1) & (-1,0,-1,-1,-1,0,-1,-1 ; 1) & -3 \epsilon \\
(0,0,0,0,0,0,0,0 ; 1) & (0,0,0,0,0,0,0,0 ; 1) & 0
\end{array}
$$

Conclusion

Pinched Feynman Integrals

- Studied an integral with a pinched contour independent of kinematics
- Found a resolution procedure to remove the pinch
- Can obtain stable numerical results only after removing pinch

MoR

- Expect regions can appear due to cancelling monomials either generically or at particular kinematic points
- Have characterised some such regions for on-shell expansion and forward scattering @ 3-loops

Outlook

- General/automated procedure to resolve these pinches/cancellations?
- New ways to analyse/compute Feynman integrals?

Thank you for listening!

Backup

Sector Decomposition

Sector Decomposition in a Nutshell

$$
I \sim \int_{\mathbb{R}_{>0}^{N+1}}[\mathrm{~d} \boldsymbol{x}] \boldsymbol{x}^{\nu} \frac{[\mathscr{U}(\boldsymbol{x})]^{N-(L+1) D / 2}}{[\mathscr{F}(\boldsymbol{x}, \mathbf{s})-i \delta]^{N-L D / 2}} \delta(1-H(\boldsymbol{x}))
$$

Singularities

1. UV/IR singularities when some $x \rightarrow 0$ simultaneously \Longrightarrow Sector Decomposition
2. Thresholds when \mathscr{F} vanishes inside integration region $\Longrightarrow i \delta$

Sector decomposition

Find a local change of coordinates for each singularity that factorises it (blow-up)

Sector Decomposition in a Nutshell

$$
\begin{gathered}
I \sim \int_{\mathbb{R}_{>0}^{N}}[\mathrm{~d} \boldsymbol{x}] \boldsymbol{x}^{\nu}\left(c_{i} \boldsymbol{x}^{\mathbf{r}_{i}}\right)^{t} \\
\mathscr{N}(I)=\operatorname{convHull}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots\right)=\bigcap_{f \in F}\left\{\mathbf{m} \in \mathbb{R}^{N} \mid\left\langle\mathbf{m}, \mathbf{n}_{f}\right\rangle+a_{f} \geq 0\right\}
\end{gathered}
$$

Normal vectors incident to each extremal vertex define a local change of variables* Kaneko, Ueda 10

$$
\begin{gathered}
x_{i}=\prod_{f \in S_{j}} y_{f}^{\left\langle\mathbf{n}_{f}, \mathbf{e}_{i}\right\rangle} \\
I \sim \sum_{\sigma \in \Delta_{V}^{T}}|\sigma| \int_{0}^{1}\left[\mathrm{~d} \mathbf{y}_{f}\right] \prod_{f \in \sigma} y_{f}^{\left\langle\mathbf{n}_{f}, \boldsymbol{\nu}\right\rangle-t a_{f}}\left(\frac{\left.c_{i} \prod_{f \in \sigma} y_{f}^{\left\langle\mathbf{n}_{f}, \mathbf{r}_{i}\right\rangle+a_{f}}\right)^{t}}{\text { Singularities }} \frac{\text { Finite }}{}\right.
\end{gathered}
$$

*|f $\left|S_{j}\right|>N$, need triangulation to define variables (simplicial normal cones $\sigma \in \Delta_{\mathcal{N}}^{T}$)

Sector Decomposition in a Nutshell

$$
\begin{aligned}
& I=\overbrace{\ldots-\ldots,}^{m}=-\Gamma(-1+2 \varepsilon)\left(m^{2}\right)^{1-2 \varepsilon} \int_{0}^{\infty} \frac{\mathrm{d} x_{1} \mathrm{~d} x_{2}}{\left(x_{1}^{1} x_{2}^{0}+x_{1}^{1} x_{2}^{1}+x_{1}^{0} x_{2}^{1}\right)^{2-\varepsilon}} . \\
& \mathbf{r}_{1}=\binom{1}{0}, \mathbf{r}_{2}=\binom{1}{1}, \mathbf{r}_{3}=\binom{0}{1} \\
& \mathcal{N}(I)=\overbrace{1}^{2} \overbrace{0}^{\mathbf{r}_{3}} \\
& \begin{aligned}
=\quad \mathbf{n}_{1} & =\binom{-1}{0}
\end{aligned} \mathbf{n}_{2}=\binom{0}{-1} \mathbf{n}_{3}=\binom{1}{1}
\end{aligned}
$$

For each vertex make the local change of variables

$$
\begin{aligned}
& \text { e.g. } \mathbf{r}_{1}: x_{1}=y_{1}^{-1} y_{3}^{1}, x_{2}=y_{1}^{0} y_{3}^{1}, \mathbf{r}_{2}: x_{1}=y_{1}^{-1} y_{2}^{0}, x_{2}=y_{1}^{0} y_{2}^{-1}, \mathbf{r}_{3}: x_{1}=y_{2}^{0} y_{3}^{1}, x_{2}=y_{2}^{-1} y_{3}^{1} \\
& I=-\Gamma(-1+2 \varepsilon)\left(m^{2}\right)^{1-2 \varepsilon} \int_{0}^{1} \mathrm{~d} y_{1} \mathrm{~d} y_{2} \mathrm{~d} y_{3} \frac{y_{1}^{-\varepsilon} y_{2}^{-\varepsilon} y_{3}^{-1+\varepsilon}}{\left(y_{1}+y_{2}+y_{3}\right)^{2-\varepsilon}}\left[\delta\left(1-y_{2}\right)+\delta\left(1-y_{3}\right)+\delta\left(1-y_{1}\right)\right]
\end{aligned}
$$

Applications

Applying Expansion by Regions

Ratio of the finite $\mathcal{O}\left(\epsilon^{0}\right)$ piece of numerical result R_{n} to the analytic result R_{a}

For large ratio of scales $\left(\mathrm{m}^{2} / \mathrm{s}\right)$ the EBR result is faster \& easier to integrate

Additional Regulators

MoR subdivides $\mathcal{N}(I) \rightarrow\left\{\mathscr{N}\left(I^{R}\right)\right\} \Longrightarrow$ new (internal) facets $F^{\text {int. }}$
New facets can introduce spurious singularities not regulated by dim reg

Lee Pomeransky Representation:

$$
\begin{gathered}
\mathcal{N}\left(I^{(R)}\right)=\bigcap_{f \in F}\left\{\mathbf{m} \in \mathbb{R}^{N} \mid\left\langle\mathbf{m}, \mathbf{n}_{f}\right\rangle+a_{f} \geq 0\right\} \\
I \sim \sum_{\sigma \in \Delta_{\mathcal{V}}^{T}}|\sigma| \int_{\mathbb{R}_{>0}^{N}}\left[\mathrm{~d} \mathbf{y}_{f}\right] \prod_{f \in \sigma} y_{f}^{\left\langle\mathbf{n}_{f}, \nu\right\rangle+\frac{D}{2} a_{f}}\left(c_{i} \prod_{f \in \sigma} y_{f}^{\left\langle\mathbf{n}_{f}, \mathbf{r}_{i}\right\rangle+a_{f}}\right)^{-\frac{D}{2}}
\end{gathered}
$$

If $f \in F^{\text {int }}$ have $a_{f}=0$ need analytic regulators $\boldsymbol{\nu} \rightarrow \boldsymbol{\nu}+\boldsymbol{\delta} \boldsymbol{\nu}$
Heinrich, Jahn, SJ, Kerner, Langer, Magerya, Põldaru, Schlenk, Villa 21; Schlenk 16

Additional Regulators (II)

Toy Example:

$$
P_{1}(x, \lambda)=1+\lambda x_{1}+x_{1} x_{2}+\lambda x_{2}
$$

pySecDec can find the constraints on the analytic regulators for you extra_regulator_constraints():

$$
v_{2}-v_{4} \neq 0, \quad v_{1}-v_{3} \neq 0
$$

suggested_extra_regulator_exponent():

$$
\left\{\delta \nu_{1}, \delta \nu_{2}, \delta \nu_{3}, \delta \nu_{4}\right\}=\{0,0, \eta,-\eta\}
$$

Small m expansion

Lee-Pomeransky and MoR

Building Bridges: LP \leftrightarrow Propagator Scaling

Region vectors in momentum space and Lee-Pomeransky space are related, we can see this using Schwinger parameters \tilde{x}_{e}

$$
\begin{gathered}
\frac{1}{D_{n}^{\nu_{e}}}=\frac{1}{\Gamma\left(\nu_{e}\right)} \int_{0}^{\infty} \frac{\mathrm{d} \tilde{x}_{e}}{\tilde{x}_{e}} \tilde{x}_{e}^{\nu_{e}} e^{-\tilde{x}_{e} D_{e}}, \text { with } x_{e} \propto \tilde{x}_{e} \\
\left(D_{1}^{-1}, \ldots, D_{N}^{-1}\right) \sim\left(\tilde{x}_{1}, \ldots, \tilde{x}_{N}\right) \sim\left(x_{1}, \ldots, x_{N}\right)
\end{gathered}
$$

Example: 1-loop form factor

$$
\text { Hard : } \quad\left(D_{1}^{-1}, D_{2}^{-1}, D_{3}^{-1}\right) \sim\left(\lambda^{0}, \lambda^{0}, \lambda^{0}\right), \quad\left(x_{1}, x_{2}, x_{3}\right) \sim\left(\lambda^{0}, \lambda^{0}, \lambda^{0}\right)
$$

Collinear to $\mathrm{p}_{1}: \quad\left(D_{1}^{-1}, D_{2}^{-1}, D_{3}^{-1}\right) \sim\left(\lambda^{-1}, \lambda^{0}, \lambda^{-1}\right), \quad\left(x_{1}, x_{2}, x_{3}\right) \sim\left(\lambda^{-1}, \lambda^{0}, \lambda^{-1}\right)$
Collinear to $\mathrm{p}_{2}: \quad\left(D_{1}^{-1}, D_{2}^{-1}, D_{3}^{-1}\right) \sim\left(\lambda^{0}, \lambda^{-1}, \lambda^{-1}\right), \quad\left(x_{1}, x_{2}, x_{3}\right) \sim\left(\lambda^{0}, \lambda^{-1}, \lambda^{-1}\right)$
Soft: $\quad\left(D_{1}^{-1}, D_{2}^{-1}, D_{3}^{-1}\right) \sim\left(\lambda^{-1}, \lambda^{-1}, \lambda^{-2}\right), \quad\left(x_{1}, x_{2}, x_{3}\right) \sim\left(\lambda^{-1}, \lambda^{-1}, \lambda^{-2}\right)$
Can connect the regions in mom. space with those we determine geometrically
Next step: automatically find (Sudakov decomposed) loop momentum scalings compatible with region vectors WIP w/ Yannick Ulrich

Building Bridges: Landau \leftrightarrow Regions

The Landau equations give the necessary conditions for an integral to diverge

$$
\begin{aligned}
& \text { 1) } \alpha_{e} l_{e}^{2}(k, p, q)=0 \quad \forall e \in G \\
& \text { 2) } \frac{\partial}{\partial k_{a}^{\mu}} \mathscr{D}(k, p, q ; \alpha)=\frac{\partial}{\partial k_{a}^{\mu}} \sum_{e \in G} \alpha_{e}\left(-l_{e}^{2}(k, p, q)-i \varepsilon\right)=0 \quad \forall a \in\{1, \ldots, L\}
\end{aligned}
$$

Solutions are pinched surfaces of the integral where IR divergences may arise

Idea is to explore the neighbourhood of a pinched surface, defined by

$$
\begin{aligned}
& \text { 1) } \alpha_{e} l_{e}^{2}(k, p, q) \sim \lambda^{p} \quad \forall e \in G, \quad \text { with } \quad p \in\{1,2\} \\
& \text { 2) } \quad \frac{\partial}{\partial k_{a}^{\mu}} \mathscr{D}(k, p, q ; \alpha) \lesssim \lambda^{1 / 2} \quad \forall a \in\{1, \ldots, L\}
\end{aligned}
$$

with the goal of further understanding the connection between
Solutions of the Landau equations \leftrightarrow Regions

Method of Regions (Details/Examples)

Geometric Method

In Feynman parameter space, there is a geometric method for finding regions
Pak, Smirnov 10
Each region will be defined by a region vector $\mathbf{v}=\left(v_{1}, \ldots, v_{N} ; 1\right)$, in each region we will perform a change of variables $x_{i} \rightarrow \lambda^{v_{i}} x_{i}$ and series expand about $\lambda=0$

Let us start by considering some polynomial

$$
P(\mathbf{x}, \lambda)=\sum_{i=1}^{m} c_{i} x_{1}^{r_{i, 1}} \cdots x_{N}^{r_{i, N}} \lambda^{r_{i, N+1}}
$$

c_{i} - non-negative coefficients
x_{i} - integration variables
λ - small parameter
$\mathbf{r}_{i}=\left(r_{i, 1}, \ldots, r_{i, N+1}\right) \in \mathbb{N}^{N+1}$ - exponent vectors

Geometric Method

Ignoring, for now, the coefficients c_{i} we can introduce a simple but useful picture for such polynomials:

- For each variable x_{i} or λ draw an orthogonal axis
- For each monomial, draw a dot at position \mathbf{r}_{i}

Example: $P(x, \lambda)=\lambda+x+x^{2}$ has exponent vectors
$\mathbf{r}_{1}=(0,1), \mathbf{r}_{2}=(1,0), \mathbf{r}_{3}=(2,0)$

Geometric Method

We may define a Newton polytope of the polynomial, this is the convex hull of the exponent vectors:

$$
\Delta=\operatorname{convHull}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots\right)=\left\{\sum_{j} \alpha_{j} \mathbf{r}_{j} \mid \alpha_{j} \geq 0 \wedge \sum_{j} \alpha_{j}=1\right\}
$$

Example: $P(x, \lambda)=\lambda+x+x^{2}$ has exponent vectors

$$
\mathbf{r}_{1}=(0,1), \mathbf{r}_{2}=(1,0), \mathbf{r}_{3}=(2,0)
$$

Geometric Method

Alternatively, this polytope can also be described as the intersection of half spaces:

$$
\Delta=\bigcap_{f \in F}\left\{\mathbf{m} \in \mathbb{R}^{N+1} \mid\left\langle\mathbf{m}, \mathbf{v}_{f}\right\rangle+a_{f} \geq 0\right\}
$$

F - set of polytope facets, $a_{f} \in \mathbb{Z}$
\mathbf{v}_{f} - inward-pointing normal vectors for each facet (co-dimension 1 face)
Several public tools exist for computing Newton polytopes/convex hulls and their representation in terms of facets exist, e.g. Normaliz and Qhull

Geometric Method

Next, let us define a vector \mathbf{u} such that $x_{i}=\lambda^{u_{i}}$ with $u_{N+1}=1$ for each point \mathbf{x} in the integration domain, we can write:

$$
P(\mathbf{u}, \lambda)=\sum_{i=1}^{m} c_{i} \lambda^{\left\langle\mathbf{r}_{i}, \mathbf{u}\right\rangle}
$$

Since $\lambda \ll 1$, the largest term in the polynomial has the smallest $\left\langle\mathbf{r}_{i}, \mathbf{u}\right\rangle$ Note that we can have several points with the same projection on \mathbf{u}, i.e. we can have several largest terms

Example: $P(x, \lambda)=\lambda+x+x^{2}$ with $\mathbf{u}=(3,1)$ gives $P(\mathbf{u}, \lambda)=\lambda+\lambda^{3}+\lambda^{6}$

Geometric Method

Next, let us define a vector \mathbf{u} such that $x_{i}=\lambda^{u_{i}}$ with $u_{N+1}=1$ for each point \mathbf{x} in the integration domain, we can write:

$$
P(\mathbf{u}, \lambda)=\sum_{i=1}^{m} c_{i} \lambda^{\left\langle\mathbf{r}_{i} \mathbf{u}\right\rangle}
$$

Since $\lambda \ll 1$, the largest term in the polynomial has the smallest $\left\langle\mathbf{r}_{i}, \mathbf{u}\right\rangle$ Note that we can have several points with the same projection on \mathbf{u}, i.e. we can have several largest terms

Example: $P(x, \lambda)=\lambda+x+x^{2}$ with $\mathbf{u}=(1,1)$ gives $P(\mathbf{u}, \lambda)=\lambda+\lambda+\lambda^{2}$

Expanding Regions

Rewrite our polynomial as: $P(\mathbf{x})=Q(\mathbf{x})+R(\mathbf{x})$
With $Q(\mathbf{x})$ defined such that it contains all of the lowest order terms in λ
The binomial expansion of
$P(\mathbf{x})^{m}=Q(\mathbf{x})^{m}\left(1+\frac{R(\mathbf{x})}{Q(\mathbf{x})}\right)^{m}$ converges for $\mathbf{x}=\lambda^{\mathbf{u}}$ if $R(\mathbf{x}) / Q(\mathbf{x})<1$

Some observations:

- An expansion with region vector \mathbf{v} converges at a point \mathbf{u} if the terms with minimum $\left.<\mathbf{r}_{i}, \mathbf{u}\right\rangle$ are contained in the terms with minimum $\left\langle\mathbf{r}_{i}, \mathbf{v}\right\rangle$
- For any \mathbf{u} the vertices with the smallest $<\mathbf{r}_{i}, \mathbf{u}>$ must be part of some facet F
- Since $u_{N+1}>0$, the lowest order terms for any \mathbf{u} must lie on a facet whose inwards pointing normal vector has a positive $(N+1)$-th component, let us call the set of such facets F^{+}or lower facets

Claim: regions are defined by vectors normal to the facets in F^{+}, the integrand in each region consists of the monomials lying on the facet

Scaleless Integrals

Scaleless integrals seem to play quite an interesting role

Momentum space

In dimensional regularisation, scaleless integrals are 0

$$
I\left(\left\{k_{i}\right\}_{a},\left\{c k_{i}\right\}_{b}\right)=c^{q} I\left(\left\{k_{i}\right\}\right) \Longrightarrow I\left(\left\{k_{i}\right\}\right)=0, \quad\left\{k_{i}\right\}=\left\{k_{i}\right\}_{a} \cup\left\{k_{i}\right\}_{b}
$$

Where $c \neq 1$ and $q \neq 0$ is some scaling dimension
Feynman parameter space

$$
(\mathscr{U F})\left(c^{\mathbf{u}} \mathbf{x}\right)=c^{q}(\mathscr{U} \mathscr{F})(\mathbf{x}), \quad \mathbf{u} \neq n \mathbf{1}, \quad n \in \mathbb{R}
$$

```
Geometrical view
For }\Delta\mathrm{ built from }\mathscr{U}+\mathscr{F
dim}(\Delta)=\operatorname{dim}(\mathbf{x})\Longleftrightarrow\mathrm{ I scaleful
\operatorname{dim}(\Delta)<\operatorname{dim}(\mathbf{x})\LongleftrightarrowI scaleless
```


Important consequences:

Faces of co-dimension >1 are scaleless
"Region" vectors not normal to a facet give scaleless integrals

Overlap contributions i.e. rescaling by two region vectors, are scaleless

Triangle Example

Consider the on-shell limit $p_{1}^{2} \sim p_{2}^{2} \sim \lambda q_{1}^{2}$ for $\lambda \rightarrow 0$

$$
\begin{gathered}
I=i \pi^{D / 2} \mu^{4-D} \int \mathrm{~d}^{D} k \frac{1}{\left(k+p_{1}\right)^{2}\left(k+p_{2}\right)^{2}\left(k^{2}\right)} \\
p_{1}=\left(p_{1}^{+}, p_{1}^{-}, p_{1}^{\perp}\right) \sim Q\left(\lambda, 1, \lambda^{\frac{1}{2}}\right) \\
p_{2} \sim Q\left(1, \lambda, \lambda^{\frac{1}{2}}\right)
\end{gathered}
$$

1) Split integrand up into regions

Hard : $k_{H}^{\mu} \sim(1,1,1) Q$
Collinear to $\mathrm{p}_{1}: k_{J_{1}}^{\mu} \sim\left(\lambda, 1, \lambda^{\frac{1}{2}}\right) Q$
Collinear to $\mathrm{p}_{2}: k_{J_{2}}^{\mu} \sim\left(1, \lambda, \lambda^{\frac{1}{2}}\right) Q$

$$
\text { Soft : } k_{S}^{\mu} \sim(\lambda, \lambda, \lambda) Q
$$

Analysis follows:
Becher, Broggio, Ferroglia 14
2) Series expand each region in λ

$$
\begin{aligned}
& I_{H}=i \pi^{d / 2} \mu^{4-D} \int \mathrm{~d}^{D} k \frac{1}{\left(k^{2}+2 k^{+} \cdot p_{1}^{-}\right)\left(k^{2}+2 k^{-} \cdot p_{2}^{+}\right)\left(k^{2}\right)} \\
& I_{C_{1}}=i \pi^{d / 2} \mu^{4-D} \int \mathrm{~d}^{D} k \frac{1}{\left(k+p_{1}\right)^{2}\left(2 k^{-} \cdot p_{2}^{+}\right)\left(k^{2}\right)} \\
& I_{C_{2}}=i \pi^{d / 2} \mu^{4-D} \int \mathrm{~d}^{D} k \frac{1}{\left(2 k^{-} \cdot p_{1}^{+}\right)\left(k+p_{2}\right)^{2}\left(k^{2}\right)} \\
& I_{S}=i \pi^{d / 2} \mu^{4-D} \int \mathrm{~d}^{D} k \frac{1}{\left(2 k^{+} \cdot p_{1}^{-}+p_{1}^{2}\right)\left(2 k^{-} \cdot p_{2}^{+}+p_{2}^{2}\right)\left(k^{2}\right)}
\end{aligned}
$$

Triangle Example

3-5) Integrate each expansion over the whole integration domain, discard scaleless, sum

$$
\begin{aligned}
& I_{H}=\frac{\Gamma(1+\epsilon)}{Q^{2}}\left(\frac{1}{\epsilon^{2}}+\frac{1}{\epsilon} \ln \frac{\mu^{2}}{Q^{2}}+\frac{1}{2} \ln ^{2} \frac{\mu^{2}}{Q^{2}}-\frac{\pi^{2}}{6}+\mathcal{O}(\lambda)\right) \\
& I_{C_{1}}=\frac{\Gamma(1+\epsilon)}{Q^{2}}\left(-\frac{1}{\epsilon^{2}}-\frac{1}{\epsilon} \ln \frac{\mu^{2}}{P_{1}^{2}}-\frac{1}{2} \ln ^{2} \frac{\mu^{2}}{P_{1}^{2}}+\frac{\pi^{2}}{6}+\mathcal{O}(\lambda)\right) \\
& I_{C_{2}}=\frac{\Gamma(1+\epsilon)}{Q^{2}}\left(-\frac{1}{\epsilon^{2}}-\frac{1}{\epsilon} \ln \frac{\mu^{2}}{P_{2}^{2}}-\frac{1}{2} \ln ^{2} \frac{\mu^{2}}{P_{2}^{2}}+\frac{\pi^{2}}{6}+\mathcal{O}(\lambda)\right) \\
& I_{S}=\frac{\Gamma(1+\epsilon)}{Q^{2}}\left(\frac{1}{\epsilon^{2}}+\frac{1}{\epsilon} \ln \frac{\mu^{2} Q^{2}}{P_{2}^{2} P_{1}^{2}}+\frac{1}{2} \ln ^{2} \frac{\mu^{2} Q^{2}}{P_{2}^{2} P_{1}^{2}}+\frac{\pi^{2}}{6}+\mathcal{O}(\lambda)\right) \\
& I=I_{H}+I_{C_{1}}+I_{C_{2}}+I_{S}=\frac{1}{Q^{2}}\left(\ln \frac{Q^{2}}{P_{2}^{2}} \ln \frac{Q^{2}}{P_{1}^{2}}+\frac{\pi^{2}}{3}+\mathcal{O}(\lambda)\right)
\end{aligned}
$$

This reproduces the expected result, but why does this work (and does it always)?

1) How did we find all the regions?
2) Did we not double-count when integrating over the whole domain?

pySecDec: EBR Box Example

Example: 1-loop massive box expanded for small $m_{t}^{2} \ll s,|t|$

Requires the use of analytic regulators
Can regulate spurious singularities by adjusting propagators powers
$G_{4}=\mu^{2 \epsilon} \int_{-\infty}^{\infty} \frac{d^{D} k}{i \pi^{D / 2}} \frac{1}{\left[k^{2}-m_{t}^{2}\right]^{\delta_{1}}\left[\left(k+p_{1}\right)^{2}-m_{t}^{2}\right]^{\delta_{2}}\left[\left(k+p_{1}+p_{2}\right)^{2}-m_{t}^{2}\right]^{\delta_{3}}\left[\left(k-p_{4}\right)^{2}-m_{t}^{2}\right]^{\delta_{4}}}$
Can keep $\delta_{1}, \ldots, \delta_{4}$ symbolic or $\delta_{1}=1+n_{1} / 2, \delta_{2}=1+n_{1} / 3, \ldots$ and take $n_{1} \rightarrow 0^{+}$

Output region vectors:
$\mathbf{v}_{1}=(0,0,0,0,1)$
$\mathbf{v}_{2}=(-1,-1,0,0,1)$
$\mathbf{v}_{3}=(0,0,-1,-1,1)$
$\mathbf{v}_{4}=(-1,0,0,-1,1)$
$\mathbf{v}_{5}=(0,-1,-1,0,1)$

Result: $s=4.0, t=-2.82843, m_{t}^{2}=0.1, m_{h}^{2}=0$)

$$
I=-1.30718 \pm 2.7 \cdot 10^{-6}+\left(1.85618 \pm 3.0 \cdot 10^{-6}\right) i
$$

$$
+\mathcal{O}\left(\epsilon, n_{1}, \frac{m_{t}^{2}}{s}, \frac{m_{t}^{2}}{t}\right)
$$

Transform the expression for the full integral:

$$
\begin{aligned}
F & =\int_{k \in D_{h}} \mathrm{D} k I+\int_{k \in D_{s}} \mathrm{D} k I=\sum_{i} \int_{k \in D_{h}} \mathrm{D} k T_{i}^{(h)} I+\sum_{j} \int_{k \in D_{s}} \mathrm{D} k T_{j}^{(s)} I \\
& =\sum_{i}\left(\int_{k \in \mathbb{R}^{d}} \mathrm{D} k T_{i}^{(h)} I-\sum_{j} \int_{k \in D_{s}} \mathrm{D} k T_{j}^{(s)} T_{i}^{(h)} I\right)+\sum_{j}\left(\int_{k \in \mathbb{R}^{d}} \mathrm{D} k T_{j}^{(s)} I-\sum_{i} \int_{k \in D_{h}} \mathrm{D} k T_{i}^{(h)} T_{j}^{(s)} I\right)
\end{aligned}
$$

The expansions commute: $T_{i}^{(h)} T_{j}^{(s)} I=T_{j}^{(s)} T_{i}^{(h)} I \equiv T_{i, j}^{(h, s)} I$
\Rightarrow Identity: $F=\underbrace{\sum_{i} \int \mathrm{D} k T_{i}^{(h)} I}_{\boldsymbol{F}^{(h)}}+\underbrace{\sum_{j} \int \mathrm{D} k T_{j}^{(s)} I}_{\boldsymbol{F}^{(s)}}-\underbrace{\sum_{i, j} \int \mathrm{D} k T_{i, j}^{(h, s)} I}_{\boldsymbol{F}^{(h, s)}}$
All terms are integrated over the whole integration domain \mathbb{R}^{d} as prescribed for the expansion by regions \Rightarrow location of boundary Λ between D_{h}, D_{s} is irrelevant.

Slide from: Bernd Jantzen, High Precision for Hard Processes (HP2) 2012

The general formalism (details)

Identities as in the examples are generally valid, under some conditions.

Consider

- a (multiple) integral $F=\int \mathrm{D} k I$ over the domain D (e.g. $D=\mathbb{R}^{d}$),
- a set of N regions $R=\left\{x_{1}, \ldots, x_{N}\right\}$,
- for each region $x \in R$ an expansion $T^{(x)}=\sum_{j} T_{j}^{(x)}$ which converges absolutely in the domain $D_{x} \subset D$.

Conditions

- $\bigcup_{x \in R} D_{x}=D \quad\left[D_{x} \cap D_{x^{\prime}}=\emptyset \forall x \neq x^{\prime}\right]$.
- Some of the expansions commute with each other.

Let $R_{\mathrm{c}}=\left\{x_{1}, \ldots, x_{N_{\mathrm{c}}}\right\}$ and $R_{\mathrm{nc}}=\left\{x_{N_{\mathrm{c}}+1}, \ldots, x_{N}\right\}$ with $1 \leq N_{\mathrm{c}} \leq N$.
Then: $T^{(x)} T^{\left(x^{\prime}\right)}=T^{\left(x^{\prime}\right)} T^{(x)} \equiv T^{\left(x, x^{\prime}\right)} \forall x \in R_{\mathrm{c}}, x^{\prime} \in R$.

- Every pair of non-commuting expansions is invariant under some expansion from R_{c} : $\forall x_{1}^{\prime}, x_{2}^{\prime} \in R_{\mathrm{nc}}, x_{1}^{\prime} \neq x_{2}^{\prime}, \exists x \in R_{\mathrm{c}}: T^{(x)} T^{\left(x_{2}^{\prime}\right)} T^{\left(x_{1}^{\prime}\right)}=T^{\left(x_{2}^{\prime}\right)} T^{\left(x_{1}^{\prime}\right)}$.
- \exists regularization for singularities, e.g. dimensional (+ analytic) regularization. \hookrightarrow All expanded integrals and series expansions in the formalism are well-defined.

Slide from: Bernd Jantzen, High Precision for Hard Processes (HP2) 2012

The general formalism (2)

Under these conditions, the following identity holds: $\quad\left[F^{(x, \ldots)} \equiv \sum_{j, \ldots .} \int \mathrm{D} k T_{j, \ldots}^{(x, \ldots)} I\right]$

$$
F=\sum_{x \in R} F^{(x)}-\sum_{\left\{x_{1}^{\prime}, x_{2}^{\prime}\right\} \subset R}^{\left\langle R_{\mathrm{c}}+1\right\rangle} F^{\left(x_{1}^{\prime}, x_{2}^{\prime}\right)}+\ldots-(-1)^{n} \sum_{\left\{x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right\} \subset R} F^{\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)}+\ldots+(-1)^{N_{\mathrm{c}}} \sum_{x^{\prime} \in R_{\mathrm{nc}}} F^{\left(x^{\prime}, x_{1}, \ldots, x_{N_{\mathrm{c}}}\right)}
$$

where the sums run over subsets $\left\{x_{1}^{\prime}, \ldots\right\}$ containing at most one region from R_{nc}.

Comments

- This identity is exact when the expansions are summed to all orders. \checkmark Leading-order approximation for $F \rightsquigarrow$ dropping higher-order terms.
- It is independent of the regularization (dim. reg., analytic reg., cut-off, infinitesimal masses/off-shellness, ...) as long as all individual terms are well-defined.
- Usually regions \& regularization are chosen such that multiple expansions $F^{\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)}(n \geq 2)$ are scaleless and vanish.
[\checkmark if each $F_{0}^{(x)}$ is a homogeneous function of the expansion parameter with unique scaling.]
- If $\exists F^{\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots\right)} \neq 0 \rightsquigarrow$ relevant overlap contributions (\rightarrow "zero-bin subtractions") . They appear e.g. when avoiding analytic regularization in SCET.

