

Collaborative Research Center TRR 257

Particle Physics Phenomenology after the Higgs Discovery

Subleading operators and gamma5-scheme dependence in SMEFT for Higgs boson pair production

Institute for Theoretical Physics, Karlsruhe Institute of Technology

Loops & Legs in Quantum Field Theory

Wittenberg, April 16, 2024

- Ramona Gröber, Stephen Jones, Matthias Kerner, Jannis Lang, Stefano Di Noi, Ludovic Scyboz, Marco Vitti
- https://arxiv.org/abs/2311.15004 GH, Jannis Lang
- https://arxiv.org/abs/2310.18221 Stefano Di Noi, Ramona Gröber, GH, Jannis Lang, Marco Vitti
- https://arxiv.org/abs/2204.13045 GH, Jannis Lang, Ludovic Scyboz

based on work in collaboration with

Higgs boson pair production

prime process to explore the Higgs potential

$$V(h) \sim \frac{1}{2} \underbrace{(2v^2\lambda)}_{m_h^2} h^2 + v\lambda h^3 + \frac{1}{m_h^2}$$

Standard Model: $\lambda = \frac{m_h^2}{2v^2} \approx 0.125$

experimentally established deviations from $\kappa_{\lambda} = 1$ are a clear sign of New Physics!

Chen, Li, Shao, Wang '19 N3LO(HTL): (HTL with top mass effects)

N3LO(HTL)+N3LL: Ajjath, Shao '22

NNLO(HTL): De Florian, Mazzitelli '13 Grigo, Melnikov, Steinhauser '14

NNLO(HTL)+Geneva PS: Alioli, Billis, Broggio et al.'22

NNLO_{FTapprox} Grazzini, Kallweit, GH, Jones, Kerner, Lindert, Mazzitelli '18 inclusion of top quark mass dependence except in virtual $\mathcal{O}(\alpha_s^3)$

NLO full m_t

Borowka, Greiner, GH, Jones, Kerner, Schlenk et al. '16 Baglio, Campanario, Glaus, Mühlleitner, Spira, Streicher '18 Davies, GH, Jones, Kerner, Mishima, Steinhauser, Wellmann '19 Bagnaschi, Degrassi, Gröber '23

top quark mass scheme uncertainties: pole mass versus MS mass Baglio, Campanario, Glaus, Mühlleitner, Ronca, Spira '18, '20

_	-	

Chen, Li, Shao, Wang '19 N3LO(HTL): (HTL with top mass effects)

N3LO(HTL)+N3LL: Ajjath, Shao '22

NNLO(HTL): De Florian, Mazzitelli '13 Grigo, Melnikov, Steinhauser '14

NNLO(HTL)+Geneva PS: Alioli, Billis, Broggio et al.'22

NNLO_{FTapprox} Grazzini, Kallweit, GH, Jones, Kerner, Lindert, Mazzitelli '18 inclusion of top quark mass dependence except in virtual $\mathcal{O}(\alpha_s^3)$

NLO full m_t

Borowka, Greiner, GH, Jones, Kerner, Schlenk et al. '16 Baglio, Campanario, Glaus, Mühlleitner, Spira, Streicher '18 Davies, GH, Jones, Kerner, Mishima, Steinhauser, Wellmann '19 Bagnaschi, Degrassi, Gröber '23

top quark mass scheme uncertainties: pole mass versus MS mass Baglio, Campanario, Glaus, Mühlleitner, Ronca, Spira '18, '20

_	-	

Chen, Li, Shao, Wang '19 N3LO(HTL): (HTL with top mass effects)

N3LO(HTL)+N3LL: Ajjath, Shao '22

NNLO(HTL): De Florian, Mazzitelli '13 Grigo, Melnikov, Steinhauser '14

NNLO(HTL)+Geneva PS: Alioli, Billis, Broggio et al.'22

NNLO_{FTapprox} Grazzini, Kallweit, GH, Jones, to $O(5^{6})$ Kerner, Lindert, Mazzitelli teo inclusion of top quark mass dependence except in virtual $\mathcal{O}(\alpha_s^3)$ **NLO full** m_t Borowka, Greiner, GH sines, Kerner, Schlenk et al. '16 Baglio, Campenario, Glaus, Mühlleitner, Spira, Streicher '18 Davies, GH, Jones, Kerner, Mishima, Steinhauser, Wellmann '19 Bagnaschi, Degrassi, Gröber '23

top quark mass scheme uncertainties: pole mass versus MS mass Baglio, Campanario, Glaus, Mühlleitner, Ronca, Spira '18, '20

_	-	

Chen, Li, Shao, Wang '19 N3LO(HTL): (HTL with top mass effects)

N3LO(HTL)+N3LL: Ajjath, Shao '22

NNLO(HTL): De Florian, Mazzitelli '13 Grigo, Melnikov, Steinhauser '14

NNLO(HTL)+Geneva PS: Alioli, Billis, Broggio et al.'22

NNLO_{FTapprox} Grazzini, Kallweit, GH, Jones, to $O(5^{6})$ Kerner, Lindert, Mazzitelli teo inclusion of top quark mass dependence except in virtual $\mathcal{O}(\alpha_s^3)$ **NLO full** m_t Borowka, Greiner, GH since, Kerner, Schlenk et al. '16 Baglio, Campenario, Glaus, Mühlleitner, Spira, Streicher '18 Davies, GH, Jones, Kerner, Mishima, Steinhauser, Wellmann '19

Baglio, Campanario, Glaus, Mühlleitner tohca, Spira '18, '20 uncertainty Loops & Legs 2024

_	-	

Chen, Li, Shao, Wang '19 N3LO(HTL): (HTL with top mass effects)

N3LO(HTL)+N3LL: Ajjath, Shao '22

NNLO(HTL): De Florian, Mazzitelli '13 Grigo, Melnikov, Steinhauser '14

NNLO(HTL)+Geneva PS: Alioli, Billis, Broggio et al.'22

NNLO_{FTapprox} Grazzini, Kallweit, GH, Jones, to $O(5^{6})$ Kerner, Lindert, Mazzitelli teo inclusion of top quark mass dependence except in virtual $\mathcal{O}(\alpha_s^3)$ **NLO full** m_t Borowka, Greiner, GH sines, Kerner, Schlenk et al. '16 Baglio, Campenario, Glaus, Mühlleitner, Spira, Streicher '18 Davies, GH, Jones, Kerner, Mishima, Steinhauser, Wellmann '19

Baglio, Campanario, Glaus, Mühlleitner toohca, Spira '18, '20 uncertainty Loops & Legs 2024

Chen, Li, Shao, Wang '19 N3LO(HTL): (HTL with top mass effects)

N3LO(HTL)+N3LL: Ajjath, Shao '22

NNLO(HTL): De Florian, Mazzitelli '13 Grigo, Melnikov, Steinhauser '14

NNLO(HTL)+Geneva PS: Alioli, Billis, Broggio et al.'22

Grazzini, Kallweit, GH, Jones, to $O(5^{0/0})$ Kerner, Lindert, Mazzitelli teo $NNLO_{FTapprox}$ inclusion of top quark mass dependence except in virtual $\mathcal{O}(\alpha_s^3)$ **NLO full** m_t Borowka, Greiner, GH sines, Kerner, Schlenk et al. '16 Baglio, Camponario, Glaus, Mühlleitner, Spira, Streicher '18 Bagnaschi, Degrassi, Gröber '23 top quark mass scheme uncertainties: apple mass versus $\overline{\text{MS}}$ mass Davies, GH, Jones, Kerner, Mishima, Steinhauser, Wellmann '19

Baglio, Campanario, Glaus, Mühlleitner toohca, Spira '18, '20 uncertainty Loops & Legs 2024

see also NLO corrections to HH decay to $bb\gamma\gamma$

Li, Si, Wang, Zhang, Zhao 2402.00401

QCD corrections to the decay decrease LO result by 19%

 \rightarrow towards NNLO with full m_t

see talk by Joshua Davies (Monday)

Full NLO EW corrections: - 4% (total cross section, larger for distributions) Bi, Huang, Huang, Ma '23

Davies, Schönwald, Steinhauser, Zhang '23 (large mt-expansion)

talks by see also Matthias Kerner, Hantian Zhang Davies, Mishima, Schönwald, Steinhauser, Zhang '22 Monday afternoon

Mühlleitner, Schlenk, Spira '22

Borowka, Duhr, Maltoni, Pagani, Shivaji, Zhao '19

Bizon, Haisch, Rottoli [Gillis, Moser, Windischhofer] '18, '24

Anomalous couplings in Higgs boson pair production

if trilinear coupling is different from the SM, other couplings are likely to be non-SM as well

need full Effective Field Theory parametrisation

figure: Ja

Effective Field Theory

Effective Field Theory

Effective Field Theory expansion schemes

SMEFT (Standard Model Effective Field Theory):

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{C_{i}^{(6)}}{\Lambda^{2}} \mathcal{O}_{i}^{\text{dim6}} + \mathcal{O}(\frac{1}{\Lambda^{3}})$$

- assumes that Higgs field transforms linearly as a doublet under SU(2)_L
- canonical (mass) dimension counting
- weakly coupled UV completion

Leading SMEFT operators relevant for HH production

SMEFT: Warsaw basis Grzadkowski et al. 1008.4884

$$\Delta \mathcal{L}_{\text{Warsaw}} = \frac{C_{H,\Box}}{\Lambda^2} (\phi^{\dagger} \phi) \Box (\phi^{\dagger} \phi) + \frac{C_{HI}}{\Lambda^2} + \left(\frac{C_{uH}}{\Lambda^2} \phi^{\dagger} \phi \bar{q}_L \phi^c t_R + h.c.\right)$$

 $\frac{D}{2}(\phi^{\dagger}D_{\mu}\phi)^{*}(\phi^{\dagger}D^{\mu}\phi) + \frac{C_{H}}{\Lambda^{2}}(\phi^{\dagger}\phi)^{3}$ $+ \frac{C_{HG}}{\Lambda^2} \phi^{\dagger} \phi G^a_{\mu\nu} G^{\mu\nu,a}$

Leading SMEFT operators relevant for HH production

SMEFT: Warsaw basis Grzadkowski et al. 1008.4884

$$\Delta \mathcal{L}_{\text{Warsaw}} = \frac{C_{H,\Box}}{\Lambda^2} (\phi^{\dagger} \phi) \Box (\phi^{\dagger} \phi) + \frac{C_{HD}}{\Lambda^2} (\phi^{\dagger} D_{\mu} \phi)^* (\phi^{\dagger} D^{\mu} \phi) + \frac{C_{H}}{\Lambda^2} (\phi^{\dagger} \phi)^3 + \left(\frac{C_{uH}}{\Lambda^2} \phi^{\dagger} \phi \bar{q}_L \phi^c t_R + h.c.\right) + \frac{C_{HG}}{\Lambda^2} \phi^{\dagger} \phi G^a_{\mu\nu} G^{\mu\nu,a}$$

?

$$+\frac{C_{uG}}{\Lambda^2}\left(\bar{q}_L\sigma^{\mu\nu}T^aG^a_{\mu\nu}\phi^c t_R + \text{h.c.}\right)$$

(chromomagnetic operator)

Leading SMEFT operators relevant for HH production

SMEFT: Warsaw basis Grzadkowski et al. 1008.4884

$$\Delta \mathcal{L}_{\text{Warsaw}} = \frac{C_{H,\Box}}{\Lambda^2} (\phi^{\dagger}\phi) \Box (\phi^{\dagger}\phi) + \frac{C_{HD}}{\Lambda^2} (\phi^{\dagger}D_{\mu}\phi)^* (\phi^{\dagger}D^{\mu}\phi) + \frac{C_H}{\Lambda^2} (\phi^{\dagger}\phi)^3 + \left(\frac{C_{uH}}{\Lambda^2} \phi^{\dagger}\phi \bar{q}_L \phi^c t_R + h.c.\right) + \frac{C_{HG}}{\Lambda^2} \phi^{\dagger}\phi G^a_{\mu\nu} G^{\mu\nu,a} ? + \frac{C_{uG}}{\Lambda^2} \left(\bar{q}_L \sigma^{\mu\nu} T^a G^a_{\mu\nu} \phi^c t_R + \text{h.c.}\right)$$

(chromagnetic operator)

sub-leading here if UV completion is a weakly coupled, renormalisable gauge theory

EFT expansion + higher orders in QCD

(SM)EFT expansion parameters:

 $\Lambda^{-d_c}(g_s^2 L)^{l_{\rm QCD}} \mathbf{L}^{l_{\rm not}-QCD}$

 d_{c} : canonical dimension

This is an expansion in several parameters

 g_s : strong coupling

- $L = (16\pi)^{-1}$: loop factor (QCD)
- $\mathbf{L} = (16\pi)^{-1}$: loop factor (new physics)
- l_{OCD} : number of QCD loops

 l_{not_QCD} : number of loops involving new particles or new interactions or EW corrections

EFT expansion + higher orders in QCD

(SM)EFT expansion parameters:

 $\Lambda^{-d_c}(g_s^2 L)^{l_{\rm QCD}} \mathbf{L}^{l_{\rm not}QCD}$

 d_c : canonical dimension

This is an expansion in several parameters

In renormalisable, weakly coupled UV completions: **Operators containing field strength tensors are loop-generated** \Rightarrow get a loop suppression factor Arzt, Einhorn Wudka '94; Buchalla, GH, Müller-Salditt, Pandler 2204.11808

 g_s : strong coupling

$$L=(16\pi)^{-1}$$
 : loop factor (QCD)

 $\mathbf{L} = (16\pi)^{-1}$: loop factor (new physics)

 l_{OCD} : number of QCD loops

 l_{not_QCD} : number of loops involving new particles or new interactions or EW corrections

Loop-generated operators

Isidori, Wilsch, Wyler, Review Mod. Phys. 2303.16922

5–7: Fermion Bilinears (ψ^2)

PTG: Potentially Tree Generated

LG: Loop Generated

$\operatorname{hermitian} + Q_{Hud}$	l [PTG]
$(ar{R}R)$	$(ar{R}R')+ ext{h.c.}$
$H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$	$Q_{Hud} \ i(\widetilde{H}^{\dagger}D_{\mu}H)(ar{u}_p\gamma^{\mu}d_r)$
$H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{u}_{p}\gamma^{\mu}u_{r})$	
$H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(ar{d}_{p}\gamma^{\mu}d_{r})$	

Loop-generated operators

Isidori, Wilsch, Wyler, Review Mod. Phys. 2303.16922

5–7: Fermion Bilinears (ψ^2)

PTG: Potentially Tree Generated

LG: Loop Generated

$\mathrm{hermitian} + Q_{Hud} \ [\mathrm{PTG}]$					
$(ar{R}R)$	$(ar{R}R')+ ext{h.c.}$				
$H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$	$Q_{Hud} \ i(\widetilde{H}^{\dagger}D_{\mu}H)(\bar{u}_p\gamma^{\mu}d_r)$				
$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{u}_{p}\gamma^{\mu}u_{r})$					
$H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$					

 $16\pi^2 \quad l_{\rm QCD} = 1$

 $\overline{\Lambda^2} \, \overline{16\pi^2}$

 $\frac{1}{\Lambda^2} \frac{16\pi^2}{16\pi^2} \quad l_{\text{not}_QCD} = 1$

 $\frac{1}{\Lambda^2} \frac{16\pi^2}{16\pi^2} \quad l_{\text{not}_QCD} = 1$

Subleading operators in SMEFT

in a renormalisable, weakly coupling UV completion

$$\mathcal{L}_{tG} = \frac{C_{tG}}{\Lambda^2} \left(\bar{Q}_L \sigma^{\mu\nu} T^a G^a_{\mu\nu} \tilde{\phi} t_R + \text{h.c.} \right)$$

$$\mathcal{L}_{4t} = \frac{C_{Qt}^{(1)}}{\Lambda^2} \bar{Q}_L \gamma^\mu Q_L \bar{t}_R \gamma_\mu t_R + \frac{C_{Qt}^{(8)}}{\Lambda^2} \bar{Q}_L \gamma^\mu T^a Q_L \bar{t}_L \bar{t}_R \gamma_\mu t_R + \frac{C_{QQ}^{(1)}}{\Lambda^2} \bar{Q}_L \gamma^\mu Q_L \bar{t}_R \gamma_\mu Q_L + \frac{C_{QQ}^{(8)}}{\Lambda^2} \bar{Q}_L \gamma^\mu T^a Q_L \bar{t}_R \gamma_\mu t_R \bar{t}_R \gamma_\mu t_R$$

 $\overline{\xi}_R \gamma_\mu T^a t_R$

 $Q_L \bar{Q}_L \gamma_\mu T^a Q_L$

Subleading operators in SMEFT

in a renormalisable, weakly coupling UV completion

$$\mathcal{L}_{tG} = \frac{C_{tG}}{\Lambda^2} \left(\bar{Q}_L \sigma^{\mu\nu} T^a G^a_{\mu\nu} \tilde{\phi} t_R + \text{h.c.} \right)$$

$$\mathcal{L}_{4t} = \frac{C_{Qt}^{(1)}}{\Lambda^2} \bar{Q}_L \gamma^\mu Q_L \bar{t}_R \gamma_\mu t_R + \frac{C_{Qt}^{(8)}}{\Lambda^2} \bar{Q}_L \gamma^\mu T^a Q_L \bar{t}_L \bar{t}_R \gamma_\mu t_R + \frac{C_{QQ}^{(1)}}{\Lambda^2} \bar{Q}_L \gamma^\mu Q_L \bar{t}_R \gamma_\mu Q_L + \frac{C_{QQ}^{(8)}}{\Lambda^2} \bar{Q}_L \gamma^\mu T^a Q_L \bar{t}_R \gamma_\mu t_R \bar{t}_R \gamma_\mu t_R$$

- 4-top operators occur in 2-loop diagrams
- treatment of γ_5 matters!
- translation between schemes also affects other operators and parameters

 $t\mathbb{P}_R\gamma^{\mu}\mathbb{P}_Lt\ t\mathbb{P}_L\gamma_{\mu}\mathbb{P}_Rt \quad \mathbb{P}_{L/R} = (\mathbb{I}\mp\gamma_5)/2$

3 theses about gamma5 in 4 dimensions

$\gamma_5=i\gamma^0\gamma^1\gamma^2\gamma^3$ definition in 4 space-time dimensions

3 theses about gamma5 in 4 dimensions

 $\gamma_5=i\gamma^0\gamma^1\gamma^2\gamma^3$ definition in 4 space-time dimensions

in 4 dimensions:

$\{\gamma_5, \gamma^{\mu}\} = 0 \quad (1); \quad \operatorname{Tr}[\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma}\gamma_5] = -4i\epsilon^{\mu\nu\rho\sigma} \quad (2); \quad \operatorname{Tr}[\Gamma_1\Gamma_2\gamma_5] = \operatorname{Tr}[\gamma_5\Gamma_1\Gamma_2] \quad (3)$ cyclicity of Traces

3 theses about gamma5 in 4 dimensions

 $\gamma_5=i\gamma^0\gamma^1\gamma^2\gamma^3$

definition in 4 space-time dimensions

in 4 dimensions:

$$\{\gamma_5,\gamma^\mu\}=0$$
 (1); $\operatorname{Tr}[\gamma^\mu\gamma^\nu\gamma^\rho\gamma^\sigma\gamma_5]=$

in $D = 4 - 2\epsilon$ dimensions: (1), (2) and (3) cannot be maintained simultaneously

$= -4i\epsilon^{\mu\nu\rho\sigma}$ (2); $\operatorname{Tr}[\Gamma_1\Gamma_2\gamma_5] = \operatorname{Tr}[\gamma_5\Gamma_1\Gamma_2]$ (3) cyclicity of Traces

gamma5 in D dimensions

different schemes to extend γ_5 to D dimensions:

"naive dimensional regularisation" (NDR):

keep
$$\{\gamma_5,\gamma^\mu\}=0$$

abandon cyclicity of trace (or fix inconsistencies by hand)

"Kreimer scheme" reading point for traces:

but: ambiguities observed at high loop orders L. Chen, 2304.13814, J. Davies et al 2110.05496, ...

Breitenlohner, Maison; 't Hooft, Veltman (**BMHV**):

$$\gamma^{\mu} = \underline{\bar{\gamma}}^{\mu} + \underline{\hat{\gamma}}^{\mu}; \{\gamma_5, \bar{\gamma}^{\mu}\} = 0; [\gamma_5, \hat{\gamma}^{\mu}] = 4$$
-dim. (D-4) dim.

- spurious breaking of gauge invariance
- needs symmetry restoring counterterms
- the latter can be derived algorithmically

see talks by Matthias Weisswange, Paul Kühler, Dominik Stöckinger

Scheme dependence induced by 4t operators

The renormalised physical amplitude must be scheme-independent

 $\mathcal{M}^{\mathrm{ren}} = \mathcal{M}^{\mathrm{scheme indep.}}$ $+ \left(C_{Qt}^{(1)} + c_F C_{Qt}^{(8)} \right) \frac{1}{\Lambda 2} \left(K_{m_t} \right) \frac{\partial \mathcal{M}_{SM}}{\partial m}$ $+ \left| 1 - \frac{v^3}{\sqrt{2}m_t} \left(\frac{C_{tH}}{\Lambda^2} + K_{tH} \frac{C_{Qt}^{(1)} + c_F C_{Qt}^{(8)}}{\Lambda^2} \right) \right| \mathcal{M}_{\rm SM}$ $+ \left[C_{tG} + \left(C_{Qt}^{(1)} + \left(c_F - \frac{c_A}{2} \right) C_{Qt}^{(8)} \right) K_{tG} \right] \frac{1}{\Lambda^2} \mathcal{M}_{tG} |_{\text{FIN}}$

$$\frac{M}{2} \times m_t$$

The renormalised physical amplitude must be scheme-independent

 $\mathcal{M}^{\mathrm{ren}} = \mathcal{M}^{\mathrm{scheme indep.}}$ $+ \left(C_{Qt}^{(1)} + c_F C_{Qt}^{(8)} \right) \frac{1}{\Lambda^2} \left(K_{m_t} \right) \frac{\partial \mathcal{M}_{SM}}{\partial m_t} \times m_t$ $+ \left| 1 - \frac{v^3}{\sqrt{2}m_t} \left(\frac{C_{tH}}{\Lambda^2} + K_{tH} \frac{C_{Qt}^{(1)} + c_F C_{Qt}^{(8)}}{\Lambda^2} \right) \right| \mathcal{M}_{SM}$ $+ \left[C_{tG} + \left(C_{Qt}^{(1)} + \left(c_F - \frac{c_A}{2} \right) C_{Qt}^{(8)} \right) K_{tG} \right] \frac{1}{\Lambda^2} \mathcal{M}_{tG} |_{\text{FIN}}$

scheme dependence of K-terms must be cancelled by scheme dependence of Wilson coefficients and parameters

The renormalised physical amplitude must be scheme-independent

 $\mathcal{M}^{\mathrm{ren}} = \mathcal{M}^{\mathrm{scheme indep.}}$ $+\left(C_{Qt}^{(1)}+c_F C_{Qt}^{(8)}\right)\frac{1}{\Lambda^2}K_{m_t}\frac{\partial \mathcal{M}_{\mathrm{SM}}}{\partial m_t}\times m_t$ $+ \left| 1 - \frac{v^3}{\sqrt{2}m_t} \left(\frac{C_{tH}}{\Lambda^2} + K_{tH} \frac{C_{Qt}^{(1)} + c_F C_{Qt}^{(8)}}{\Lambda^2} \right) \right| \mathcal{M}_{SM}$ $+ \left[C_{tG} + \left(C_{Qt}^{(1)} + \left(c_F - \frac{c_A}{2} \right) C_{Qt}^{(8)} \right) K_{tG} \right] \frac{1}{\Lambda^2} \mathcal{M}_{tG} |_{\text{FIN}}$ γ_{tG}

- - scheme dependence of K-terms must be cancelled by scheme dependence of Wilson coefficients and parameters

possible solution: redefine parameters, absorbing scheme dependent parts

$$\tilde{C}_{tG} = C_{tG} + \left(C_{Qt}^{(1)} + (c_F - \frac{c_A}{2})C_{Qt}^{(8)}\right)K_{tG}$$
$$\tilde{C}_{tH} = C_{tH} + \left(C_{Qt}^{(1)} + c_F C_{Qt}^{(8)}\right)K_{tH}$$
$$\tilde{m}_t = m_t \left(1 + \frac{C_{Qt}^{(1)} + c_F C_{Qt}^{(8)}}{\Lambda^2}K_{m_t}\right)$$

known e.g. in flavour physics Ciuchini et al. '93 Herrlich, Nierste '94

possible solution: redefine parameters, absorbing scheme dependent parts

$$\tilde{C}_{tG} = C_{tG} + \left(C_{Qt}^{(1)} + (c_F - \frac{c_A}{2})C_{Qt}^{(8)}\right)K_{tG}$$
$$\tilde{C}_{tH} = C_{tH} + \left(C_{Qt}^{(1)} + c_F C_{Qt}^{(8)}\right)K_{tH}$$
$$\tilde{m}_t = m_t \left(1 + \frac{C_{Qt}^{(1)} + c_F C_{Qt}^{(8)}}{\Lambda^2}K_{m_t}\right)$$

more flexible: derive a translation dictionary by requiring $\ X$

known e.g. in flavour physics

Ciuchini et al. '93

Herrlich, Nierste '94

$ilde{X}$ NDR $_$ $\tilde{\mathbf{v}}$ BMHV $-\Lambda$

Translation between BMHV and NDR

4-top operators are linked to other operators through a scheme translation

$$m_t^{\text{BMHV}} = m_t^{\text{NDR}} - \frac{m_t^3}{8\pi^2 \Lambda^2} \left(C_{Qt}^{(1)} + c_F C_{Qt}^{(8)} \right)$$
$$C_{tH}^{\text{BMHV}} = C_{tH}^{\text{NDR}} + \frac{\sqrt{2}m_t (4m_t^2 - m_h^2)}{16\pi^2 v^3} \left(C_{Qt}^{(1)} + c_F C_{Qt}^{(8)} \right)$$
$$C_{tG}^{\text{BMHV}} = C_{tG}^{\text{NDR}} + \frac{\sqrt{2}m_t g_s}{16\pi^2 v} \left(C_{Qt}^{(1)} + (c_F - \frac{c_A}{2}) C_{Qt}^{(8)} \right)$$

note: loop suppression factor for C_{tG} not included here (Warsaw basis conventions)

Translation between BMHV and NDR

4-top operators are linked to other operators through a scheme translation

note: loop suppression factor for C_{tG} not included here (Warsaw basis conventions)

shift can be of same order as Wilson coefficient itself

$$\frac{1}{2} + c_F C_{Qt}^{(8)} + c_F C_{Qt}^{(8)} + \frac{1}{2} \left(C_{Qt}^{(1)} + c_F C_{Qt}^{(8)} \right)$$

$$\frac{1}{2} + (c_F - \frac{c_A}{2}) C_{Qt}^{(8)} + \frac{1}{2} C_{Qt}^{(8)$$

Loops & Legs 2024

Effect of different gamma5-schemes

value pairs of $(C_{Qt}^{(1)}, C_{tG}^{\text{NDR}})$ within the circle are mapped to value pairs of $(C_{Qt}^{(1)}, C_{tG}^{\text{BMHV}})$ within the ellipse

$$C_{tG}^{\text{BMHV}} = C_{tG}^{\text{NDR}} - \frac{\sqrt{2}m_t g_s}{16\pi^2 v} \left(C_{Qt}^{(1)} + \left(c_F - \frac{c_A}{2} \right) \right)$$

$$C_{Qt}^{(8)}$$

.15004 2311 Lang GH,

Effect of different gamma5-schemes

value pairs of $(C_{Qt}^{(1)}, C_{tG}^{\text{NDR}})$ within the circle are mapped to value pairs of $(C_{Qt}^{(1)}, C_{tG}^{\text{BMHV}})$ within the ellipse

$$C_{tG}^{\text{BMHV}} = C_{tG}^{\text{NDR}} - \frac{\sqrt{2}m_t g_s}{16\pi^2 v} \left(C_{Qt}^{(1)} + \left(c_F - \frac{c_A}{2} \right) \right)$$

total cross section is the same in both schemes, a single Wilson coefficient is not an observable

.15004 2311 Lang GH,

Effect of chromomagnetic and $C_{QQ}^{(1)} + C_{tt}$ operators

variation ranges: from global fit (marginalised), Ethier et al, 2105.00006 [SMEFiT coll.]

Effect of C_{tG} in this variation range larger than SM scale uncertainties

2311.15004 Lang, GH,

Effect of $C_{Ot}^{(1)}$ in different gamma5 schemes

large effect and very different behaviour in the two schemes

Effect of $C_{Ot}^{(8)}$ in different gamma5 schemes

large effect, scheme difference less pronounced; H(H) production to constrain 4top-operators?

Summary & outlook

- Field Theory has several aspects:
 - combination with higher orders in perturbation theory
 - inclusion of subleading operators
 - Wilson coefficients, ...
 - - gamma5 scheme dependence also affects other operators

Increasing the precision in modelling potential new physics effects by Effective

control of truncation effects, inclusion of operators beyond dimension 6, running

SMEFT description of Higgs boson (pair) production beyond leading O's: 4-fermion operators enter at two loops, introduce a dependence on gamma5 scheme translation "dictionary" provided for operators entering H(H) production

constraints on individual Wilson coefficients can be scheme dependent!

if we lead a careless life all our money cannot buy a place in heaven (free interpretation of Luther)

if we lead a careless life all our money cannot buy a place in heaven (free interpretation of Luther)

if we treat gamma5 carelessly all our fits of Wilson coefficients may not lead us to a BSM theory

backup slides

Translation between BMHV and NDR

similarly: operators of type $\psi^2 \phi^2 D$, e.g. $\mathcal{L}_{2t2\phi} = \frac{\mathcal{C}_{\phi Q}^{(1)}}{\Lambda^2} \bar{Q}_L \gamma_\mu Q_L \left(\phi^{\dagger} i \overleftrightarrow{D}^{\mu} \phi\right) + \frac{\mathcal{C}_{\phi t}}{\Lambda^2} \bar{t}_R \gamma_\mu t_R \left(\phi^{\dagger} i \overleftrightarrow{D}^{\mu} \phi\right)$

modification of EW-type couplings

Effect of different gamma5 schemes

benchmark point 6

Tools for ggHH production with QCD corr. + EFT

HEFT

- LO + NLO in heavy top limit: HPAIR Gröber Mühlleitner, Spira, Streicher '15, '17
- NLO QCD with full top quark mass dependence implemented in **ggHH** code available at

http://powhegbox.mib.infn.it/User-Process-V2

- κ_{λ} variations only: GH, Jones, Kerner, Luisoni, Scyboz 1903.08137
- **5 anomalous couplings:** GH, Jones, Kerner, Scyboz 2006.16877
- approximate NNLO (HTL NNLO, full NLO): De Florian, Fabre, GH, Mazzitelli, Scyboz 2106.14050

SMEFT

leading + subleading operators: also: LO / HTL tools, MG5_aMC@NLO

ggHH_SMEFT (NLO QCD) **GH**, Lang, Scyboz '22, '23

Brivio et al., Degrande et al.

SMEFT truncation

 $= \mathcal{M}_{SM} + \mathcal{M}_{\dim 6} + \mathcal{M}_{(\dim 6)^2}$

Naive translation HEFT to SMEFT

benchmark						C	C	C	C	•
(* = modified)	c_{hhh}	$ c_t$	$ c_{tt} $	c_{ggh}	c_{gghh}	$\cup_{H,kin}$	\cup_{H}	\cup_{uH}	\cup_{HG}	
SM	1	1	0	0	0	0	0	0	0	1 Te
1*	5.105	1.1	0	0	0	4.95	-6.81	3.28	0	1 Te
3*	2.21	1.05	$-\frac{1}{3}$	0.5	0.25^{*}	13.5	2.64	12.6	0.0387	1 Te
6*	-0.684	0.9	$-\frac{1}{6}$	0.5	0.25	0.561	3.80	2.20	0.0387	1 Te

HEFT	Warsaw	
c_{hhh}	$1 - 2 \frac{v^2}{\Lambda^2} \frac{v^2}{m_h^2} C_H + 3 \frac{v^2}{\Lambda^2} C_{H,\text{kin}}$	
c_t	$1 + \frac{v^2}{\Lambda^2} C_{H,\text{kin}} - \frac{v^2}{\Lambda^2} \frac{v}{\sqrt{2}m_t} C_{uH}$	
c_{tt}	$-\frac{v^2}{\Lambda^2}\frac{3v}{2\sqrt{2}m_t}C_{uH} + \frac{v^2}{\Lambda^2}C_{H,\text{kin}}$	h ightarrow h + q
c_{ggh}	$rac{v^2}{\Lambda^2}rac{8\pi}{lpha_s}C_{HG}$	
c_{gghh}	${v^2\over \Lambda^2}{4\pi\over lpha_s}C_{HG}$	$C_{H,\mathrm{kin}}:=$

 $E^2 \, rac{|C_i|}{\Lambda^2} \ll 1 \,\, {
m not \, fulfilled} \,\, {
m for} \,\, \Lambda \simeq 1 \, {
m TeV}$ and $E \simeq m_{hh}$ up to ~1 TeV

$$v^2 \frac{\mathcal{C}_{H;\,\mathrm{kin}}}{\Lambda^2} \left(h + \frac{h^2}{v} + \frac{h^3}{3v^2}\right)$$

to achieve canonical kinetic term

Truncation effects on Higgs boson pair invariant mass

benchmark point 6*

large differences between different truncation options and HEFT/SMEFT

figures: Jannis Lang

differences between truncation options smaller, but

can hardly be distinguished from SM within NLO scale uncertainties

HEFT and SMEFT

• HEFT: Goldstone sector has a symmetry $SU(2)_L \times SU(2)_R$ (chiral)

• physical Higgs field h(x) is $SU(2)_L \times U(1)_Y$ singlet (cf. non-linear sigma-model)

Lagrangian can contain polynomials

$$\sum_{n} c_n \left(\frac{h}{v}\right)^n \text{ with no a priori relation}$$

- UV completion can be strongly coupled model examples: composite H, H-dilaton, conformal H, induced EWSB, ...
- SMEFT: Higgs field $\Phi(x)$ is complex doublet, transforms linearly under $SU(2) \times U(1)$

which is broken to $SU(2)_{L+R}$ ("custodial symmetry", protects the rho-parameter)

- on among the c_n

Loop counting matters in SMEFT

Buchalla, GH, Müller-Salditt, Pandler, arXiv:2204.11808

general term in EFT Lagrangian: $C\cdot\partial^{N_p}\phi^{N_\phi}A^{N_A}\psi^{N_\psi}\kappa^{N_\kappa}$

EFT power counting: estimate size of coefficient ()

size depends on both, canonical dimension d_c and loop order L

$$\Rightarrow C = C(d_c, d_\chi)$$

 $d_c = N_p + \frac{3}{2}N_\psi + N_\phi + N_A$, $d_\chi = N_p + \frac{1}{2}N_\psi + N_\kappa$

loop order L can also be expressed by chiral dimension d_{χ} : $L = \frac{1}{2}(d_{\chi} - 2)$

Loop counting matters in SMEFT

define reference scale $f=\Lambda/4\pi$ where EFT expansion is valid

Lagrangian has canonical dimension 4, loop factors $1/16\pi^2$ are counted by L

$$\Rightarrow C(d_c, d_{\chi}) = \frac{f^{4-d_c}}{(4\pi)^{d_{\chi}-2}} = \frac{1}{\Lambda^{d_c}}$$

$$d_\chi = N_p + rac{1}{2}N_\psi + N_\kappa \Longrightarrow \,\,$$
 need to know s

 $\frac{1}{l_c - 4} \left(\frac{1}{4\pi}\right)^{d_\chi - d_c + 2}$ therefore, at canonical dimension $d_c = 6: C(d_c, d_{\chi}) = \frac{1}{\Lambda^2} \left(\frac{1}{16\pi^2}\right)^{\frac{d_{\chi}-4}{2}}$

scaling with number of weak couplings N_{κ}

Loop counting matters in SMEFT

result for **renormalisable** interactions:

terms with field strength tensors:

 $\kappa^4 \psi \, \sigma_{\mu
u} F^{\mu
u} \phi \, \psi$, $\kappa^4 \phi^\dagger \phi \, F_{\mu\nu}$

chromomagnetic operator

 $C(d_c = 6, d_{\chi}) = \frac{1}{\Lambda 2} \left(\frac{1}{1 - 2}\right)^{\frac{d_{\chi}}{2}}$ $16\pi^2$ / Λ^{z}

38

terms with 4 fermions: $\chi \sim \kappa^2 (\bar{\psi}\psi)^2 \quad d_\chi = 4$

$$_{\nu}F^{\mu\nu} \quad d_{\chi} = 6$$

$$\stackrel{4}{\Rightarrow} C_{\rm chromo} = \frac{1}{\Lambda^2} \left(\frac{1}{16\pi^2} \right)$$

