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David Broadhurst, Open University, UK, 19 April 2024,
at Loops and Legs 2024, in Lutherstadt Wittenberg

Numerical evaluations of 2-loop kites and 3-loop tadpoles with several elliptic
obstructions lead to remarkable empirical evaluations in terms of polylogarithms,
for which proofs are very hard to find, notwithstanding intensive use of packages such
as HyperInt and MZIteratedIntegral. I describe the efficient methods by which
puzzlingly simple results were obtained and hopes for demystifying them.

Martin Luther: Alles was in der Welt erreicht wurde, wurde aus Hoffnung getan.

1. Fast numerical algorithms for kites and tadpoles

2. Surprising empirical reductions to polylogarithms

3. Efforts at demystification, with Yajun Zhou

In memoriam, Gabriel Barton (25 February 1934 to 11 October 2022) and Donald Hill
Perkins (15 October 1925 to 30 October 2022), trusted guides and mentors.



Consider the generic 2-loop scalar kite with 5 internal masses:
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Since 1962 it was known to have elliptic obstructions from 3-particle cuts.
In the 2-loop electron propagator, with two massless lines, the spectral function
contains the integral of an elliptic integral, tackled by Sabry. At this conference,
Christoph Nega gave a talk on the 3-loop propagator.

If we insert a magnetic moment operator and go to threshold, the result is a
trilogarithm, calculated (incorrectly) by Karplus and Kroll, with later correction
by Petermann and by Sommerfield. See The Unpublished Feynman Diagram IIc,
arXiv:2010.10345 [physics.hist-ph] by Consa, for historical details.



Now close the kite with a sixth propagator 1/(q2 −m2
6) to obtain a tadpole
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with the symmetry group S4 of the tetrahedron giving 12 elliptic obstructions.
The tadpole has a logarithmic divergence that we regulate in D = 4− 2ε dimensions

T 5,4,6
1,2,3 =

(
1

3ε
+ 1

)
6ζ3 + 3ζ4 − F 5,4,6

1,2,3 +O(ε) (1)

with a finite part F that depends on the six ratios mk/µ, where µ is the scale
of dimensional regularization. The rescaling mk → λmk gives F → F + 12ζ3 log(λ).
Without loss of generality, choose m6 to be the largest mass and set µ = m6 = 1.



With µ = m6 = 1, Schwinger parametrization gives the 5-dimensional integral

F 5,4,6
1,2,3 =

∫ ∞
0

dx1 . . .

∫ ∞
0

dx5
1

U 2
log

(
1 +

5∑
k=1

xkm
2
k

)
(2)

after setting x6 = 1 in the Symanzik polynomial of the tetrahedron

U = x3(x1x2 + x4x5) + x6(x1x4 + x2x5) + x3x6(x1 + x2 + x4 + x5)

+ x2x4(x1 + x3 + x5 + x6) + x1x5(x2 + x3 + x4 + x6). (3)

I was able to reduce this to a single integral of a dilogarithm against the derivative
of the discontinuity I(s+ iε)− I(s− iε) = 2πiσ(s) of a kite integral:

F 5,4,6
1,2,3 = −

∫ ∞
s0

ds σ′(s) Li2(1− s), (4)

I(q2) = − q
2

π4

∫
d4l

∫
d4k

5∏
j=1

1

p2j −m2
j − iε

=

∫ ∞
s0

ds σ′(s) log

(
1− q2

s

)
, (5)

(p1, p2, p3, p4, p5) = (l, l − q, l − k, k, k − q),
s0 = min(s1,2, s4,5, s2,3,4, s1,3,5), sj,k = (mj +mk)

2, si,j,k = (mi +mj +mk)
2.



The non-elliptic contribution from 2-particle intermediate states has the form

σ′N(s) = Θ(s− s1,2)σ′1,2(s) + Θ(s− s4,5)σ′4,5(s). (6)

Denote the square root of the symmetric Källén function by

∆(a, b, c) =
√
a2 + b2 + c2 − 2(ab+ bc+ ca) (7)

with abbreviations ∆j,k(s) = ∆(s,m2
j ,m

2
k) and ∆i,j,k = ∆j,k(m

2
i ). Then

Dj,k(s) =
r

s− (mj −mk)2
log

(
1 + r

1− r

)
, r =

(
s− (mj −mk)

2

s− (mj +mk)2

)1/2

(8)

provides the logarithms in

∆1,2(s)σ
′
1,2(s) = <

(
(s+ α)D4,5(s) + L4,5 +

∑
i=0,+,−

Ci
D4,5(s)−D4,5(si)

s− si

)
(9)



with constants

C0 = −(m2
1 −m2

2)(m
2
4 −m2

5), C± = αs± + β, L4,5 = log

(
m4m5

m2
3

)
,

α =
(m2

1 −m2
4)(m

2
2 −m2

5)

m2
3

−m2
3, β =

(m2
1m

2
5 −m2

2m
2
4)(m

2
1 −m2

2 −m2
4 +m2

5)

m2
3

,

s0 = 0, s± =
m2

1 +m2
2 − 2m2

3 +m2
4 +m2

5 − α
2

± ∆1,3,4∆2,3,5

2m2
3

where s± locate leading Landau singularities of triangles that form the kite.

Elliptic contribution: This comes from 3-particle intermediate states, giving

σ′E(s) = Θ(s− s2,3,4)σ′2,3,4(s) + Θ(s− s1,3,5)σ′1,3,5(s). (10)

It contains complete elliptic integrals of the third kind of the form

P (n, k) =
Π(n, k)

Π(0, k)
, Π(n, k) =

∫ π/2

0

dθ

(1− n sin2 θ)
√

1− k2 sin2 θ
(11)

with Π(0, k) = (π/2)/AGM (1,
√

1− k2) given by an arithmetic-geometric mean.



With s = w2, an integration over the phase space of particles 2, 3 and 4 determines

k2 = 1− 16m2m3m4w

W
, W = (w2

+ −m2
+)(w2

− −m2
−) (12)

with w± = w ±m2 and m± = m3 ±m4. Then I obtain

σ′2,3,4(w
2) =

4πm3m4

AGM (
√

16m2m3m4w,
√
W )
<

( ∑
i=+,−

Ei
P (ni, k)− P (n1, k)

ti − t1

)
(13)

with coefficients and arguments given, as compactly as possible, by

E± =
m2

2 −m2
3 +m2

5

2m2
5

±
(
m2

4 −m2
5 − w2

2m2
5

)
∆2,3,5

∆4,5(w2)
,

t± =
γ ±∆2,3,5∆4,5(w

2)

2m2
5

, t1 = m2
1, ni =

(w2
− −m2

+)(ti −m2
−)

(w2
− −m2

−)(ti −m2
+)
,

γ = (m2
2 +m2

3 +m2
4 −m2

5 + w2)m2
5 + (m2

2 −m2
3)(m

2
4 − w2).



An AGM procedure speedily evaluates P (n, k) = Π(n, k)/Π(0, k) to high precision.

1. Initialize [a, b, p, q] = [1,
√

1− k2,
√

1− n, n/(2− 2n)]. Then set f = 1 + q.

2. Set m = ab and then r = p2 +m. Replace [a, b, p, q] by a vector of new values
as follows: [(a+ b)/2,

√
m, r/(2p), (r − 2m)q/(2r)]. Add q to f .

3. If |q/f | is sufficiently small, return P (n, k) = f , else go to step 2.

On the cut with n ≥ 1, the principal value is <P (n, k) = 1− P (k2/n, k).

Criterion for any anomalous contribution: Suppose that s4,5 ≥ s1,2. Then

σ′(s) = σ′N(s) + σ′E(s) + CA
Θ(s− s4,5)

∆4,5(s)
<
(

2πi∆4,5(s−)

s− s−

)
(14)

with CA 6= 0 if and only if (m1 +m2)(m
2
3 +m1m2) < m1m

2
5 +m2m

2
4 and at least one

of ∆1,3,4 and ∆2,3,5 is imaginary, in which case CA = ±1 is the sign of =∆4,5(s−).

This value of CA ∈ {0, 1,−1} is determined by the high-energy behaviour

s2σ′(s) = 2L3 +
∑

k=1,2,4,5

(Lk +m2
k) + O

(
log(s)

s

)
, Lk = m2

k log(s/m2
k). (15)



Stringent tests for kites and tadpoles

1. Elliptic terms do not depend on the order of phase-space integrations.

2. The derivative of the discontinuity of a kite satisfies the sum rule∫ ∞
s0

ds σ′(s) log

(
s

s0

)
= 6ζ3. (16)

3. High-energy behaviour of σ′(s) holds irrespective of anomalous thresholds.

4. Benchmarks for kites given by Stefan Bauberger and Manfred Böhm, to 6
decimal digits, and by Stephen Martin, to 8 decimal digits, are confirmed and
then extended to 100 digits in less than a second.

5. The same tadpole is obtained by integrating over 6 distinct kites.

6. The binary tadpoles with mk ∈ {0, 1} agree with my previous reductions to
poloylogs of sixths roots of unity.



Surprising reductions to polylogs: When all 6 masses are non-zero, there is no
non-elliptic route. Yet in 3 cases, I found empirical reductions to polylogs.
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A binary surprise: Dressings of the tetrahedron with zero or unit masses give
rational linear combinations of 4 constants: ζ4 = π4/90, Cl22(π/3), U3,1 and V3,1,
with Cl2(π/3) = =Li2(λ), λ = (1 +

√
−3)/2, and reducible double sums

U3,1 =
∑

m>n>0

(−1)m+n

m3n
= 1

2ζ4 + 1
2ζ2 log2(2)− 1

12 log4(2)− 2 Li4(
1
2), (17)

V3,1 =
∑
m>n

(−1)m cos(2πn/3)

m3n
= −145

432ζ4 + 1
8ζ2 log2(3)− 1

96 log4(3)

+ 1
32Li4(

1
9)− 3

4Li4(
1
3) + 1

3Cl22(π/3). (18)



With 5 unit masses, there was a non-elliptic route to my result

F5 = 550
27 ζ4 + 16V3,1 − 8

3Cl22(π/3) (19)

which Yajun Zhou and I have now proved, using HyperInt from Erik Panzer. More
surprising is my very simple empirical result for the totally massive case

F6
?
= 16ζ4 + 8U3,1 + 4Cl22(π/3). (20)

The closest we recently got to a proof involves a double integral of products of logs,
for which HyperInt gives 1300 multiple polylogarithms of 12th roots of unity. We
use powerful software from Kam Cheong Au to handle 12th roots, yet still fall far
short of proving (20).

A perfect surprise: I investigated a perfect tetrahedron with ∆i,j,k = 0 at all 4
vertices, eliminating all square roots. Here I also found an empirical reduction to
classical polylogs, with help from Steven Charlton. Promoting subscripts and
superscripts to masses values, I conjecture that, with L = log(2),

F
( 12 ,

1
2 ,1)

( 12 ,
1
2 ,1)

?
= B = 6

(
2ζ4 − 3Li4(

1
4)
)

+ 8
(
2ζ3 − 3Li3(

1
4)
)
L− 12 Li2(

1
4)L2 − 4L4. (21)



This is equivalent to an evaluation in classical polylogs of the integral of a trilog
against complete elliptic integrals of the first and second kinds:

K(k) =

∫ π/2

0

(1− k2 sin2 θ)−1/2dθ, E(k) =

∫ π/2

0

(1− k2 sin2 θ)1/2dθ, (22)

Z(y) =
y(1 + y)K(k) + E(k)

(1 + y + y2)
√

1 + y
, k2 = 1− y3 , (23)

T (y) = Li3(u)− 1
2 Li2(u) log(u) , u =

y

(1 + y)2
, (24)

4

∫ 1

0

dy

(
1

y
− 1

)
T (y)Z(y)

?
= B + 16 ζ4 + 32U3,1 − 30 ζ3 log(2). (25)

A third surprise: In an imperfect case, I found empirically that

F
(1,1,1)

( 12 ,
1
2 ,

1
2 )

?
= 10ζ4 − 4U3,1 + 10Cl22(π/3) + 3ζ3 log(2)− 1

2B (26)

also has a remarkable reduction to classical polylogs.



Combining the perfect and imperfect cases, I arrive at the conjecture

4

∫ ∞
2

dw

w

(
Li2

(
1− 1

w2

)
− ζ2

)
Y (w)

?
= ζ4 − 4U3,1 + 7ζ3 log(2) (27)

Y (w) =
Π(0, k)− Π(n, k)− 6 Π(n̂, k)

(w − 1)
√
w2 + 2w

, (28)

k2 = 1− 4

(w − 1)2(w + 2)
, n = 1− 1

(w − 1)2
, n̂ = 1− 2

w(w − 1)
. (29)

with an integral of a dilogarithm against complete elliptic integrals of the third
kind reduced to classical polylogs in a spectacularly simple result.

Comment: I was guided by Feynman’s skepticism, imagining him to say:
ignore fancy reasons for this integral being impossible; just try to guess the answer.



Can 3-loop tadpoles be reduced to polylogarithms?

Conservative answer: some can, some cannot.

Bold (or foolish?) suggestion: every 3-loop tadpole with rational masses reduces to
multiple polylogs in an alphabet with algebraic letters.

Contra hyp: With 6 distinct non-zero masses there are 12 elliptic obstructions.

Desmond Tutu: Hope is being able to see that there is light despite all of the darkness.

Grounds for hope and chinks of light:

1. Three seemingly impossible cases reduce empirically to polylogs.

2. The Schwinger parametrization does not look too frightening.

3. A double integral of a product of logs with complicated arguments is achievable.
The obstructing quartics might be rationalized by a pair of Euler substitutions.
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