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Setup

The graphical functions method works for
massless,
2pt, 3pt, or convergent (conformal) 4pt amplitudes
in even dimensions ≥ 4.

In this setup, high loop orders are possible.
Ideal playground: renormalization functions β(g), γ(g), γm(g).
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Idea

Massless 2pt amplitudes are scalars (periods). Add a third
point for more structure.
Massless 3pt integrals (or 4pt conformal) are the simplest
functions in QFT (two-scale).
Construct a given Feynman integral by an increasing sequence
of 3pt subgraphs.
Use position space. Three points span a plane in RD.
Consider this plane as C.
Study the 3pt integrals as functions on C using the theory of
complex functions.
Add edges by solving the Laplace equation.
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Picture (by M. Borinsky)
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Definition

The graphical function fG(z) is related to the Feynman integral AG
by

AG(z0, z1, z2) = ||z1 − z0||−2λNG fG(z),

with invariants

‖z2 − z0‖2

‖z1 − z0‖2
= zz , ‖z2 − z1‖2

‖z1 − z0‖2
= (z − 1)(z − 1),

and the scaling weight (superficial degree of divergence)

NG =
( ∑

e∈EG

νe
)
− (λ+ 1)|V int|

λ
,

where
νe ∈ R (edge weights), λ = D/2− 1.
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General properties

Reflection symmetry fG(z) = fG(z).
fG is a real-analytic single-valued function on C\{0, 1} (with
M. Golz, E. Panzer).
There exist single-valued log-Laurent expansions for the εk
coefficients of fG(z) at the singular points s = 0, 1 and at ∞.

∑
`≥0

∞∑
m,n=Ms

cs,k
`,m,n[log(z−s)(z−s)]`(z−s)m(z−s)n if |z−s| < 1,

∑
`≥0

M∞∑
m,n=−∞

c∞,k`,m,n(log zz)`zmzn if |z | > 1,

with c•,k`,m,n = c•,k`,n,m ∈ R.
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Construction

Add edges between external vertices z
1

0

 =

 z
1

0

 = (zz)λνe

 z
1

0


= [(z − 1)(z − 1)]λνe

 z
1

0

 .
Permute external vertices z

0

1

 =

 (1−z)
1

0

 = (zz)−λNG

 1
0
1
z

 .
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Appending edges

Invert the effective Laplace operator �D for an isolated edge
of weight 1 at vertex z ,

(
∆n + ε/2

z − z (∂z−∂z)
) z

1

0

 = − 1
Γ(λ)

 z
1

0


with ∆n = 1

(z − z)n+1∂z∂z(z − z)n+1 + n(n + 1)
(z − z)2 ,

where D = 2n + 4− ε.
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Vertex integration

In the last step one may want to integrate over z to pass from
a 3pt function to a 2pt function using

1
(2i)2λ√πΓ(λ+ 1/2)

∫
C

fG(z)(z − z)2λd2z .

In even integer dimensions one can use a residue theorem to
do the integral.
In non-integer dimensions we add an edge between 0 and z of
weight −1, append an edge of weight 1 to z , and set z = 0.
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Picture (by M. Borinsky)
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The five miracles of graphical functions

For even integer D there exists a closed solution for the
effective Laplace equation by taking single-valued primitives
(with M. Borinsky). This is trivial in D = 4 dimensions.
The solution is unique in the space of graphical functions.
Generalized single-valued hyperlogarithms (GSVHs) are closed
under solving the effective Laplace equation. The algorithm is
efficient for GSVHs.
The solution generalizes to non-integer dimensions 2n + 4− ε.
Spin k ∈ Z>0 in D dimensions (QED, Yang-Mills) makes the
effective Laplace equation a coupled system with triangular
matrix whose diagonal is populated by (copies of)
�D,�D+2, . . . ,�D+2k .
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GSVHs

Generalized single-valued hyperlogarithms (GSVHs) are iterated
single-valued primitives of differential forms

dz
azz + bz + cz + d , a, b, c, d ∈ C,

on the punctured (!) Riemann sphere C\{s1, . . . , sn}.
Example (C. Duhr et al.): ∫

sv

D(z) dz
z − z ,

where D(z) is the Bloch-Wigner dilogarithm,

D(z) = Im (Li 2(z) + log(1− z) log |z |).
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The commutative hexagon

GSVHs can be constructed with a commutative hexagon:

∂zG ∂zG

∂zG∂zG

π∂z
π∂z

∫
sv
dz

∫
sv
dz

∂z∂zG

G

∂z
∫
sv dz

where G is the C-algebra of GSVHs and π∂z (π∂z ) kills
(anti-)residues in ∂zG (∂zG).

Oliver Schnetz Loop calculations with graphical functions



2n + 4− ε dimensions

Taylor coefficients of convergent graphical functions in
non-integer dimensions are obtained by a straight forward
expansion method.
For singular graphical functions a sophisticated subtraction
method is necessary to obtain the Laurent coefficients.
Problem: inversion of the effective Laplace equation.
Example: bottom line in the cat eye calculation,

1
(zz)2λ((z − 1)(z − 1))λ .

After inverting the effective Laplace operator, the graphical
function has a singular part which is annihilated by ∆0,

1
z − z ∂z∂z(z − z) 2

εzz = 0.
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Subtraction of subdivergences

Solution: Subtract (logarithmic) subdivergences:(
1

(zz)2λ((z − 1)(z − 1))λ −
1

(zz)2λ

)
+ 1

(zz)2λ .

The first term is sufficiently regular at z = 0: The effective
Laplace equation can be inverted uniquely.
The inversion of the second term is a convolution:

1
πD/2

∫
RD

1
||x ||4λ||x − z2(z)||2λdx .

The general situation is fully algorithmic.
Quadratic subdivergences are mere 2pt insertions.
No a priori analysis or extra orders in ε necessary.
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The graphical function toolbox

There exists a large toolbox for calculating low order Laurent
coefficients of (singular) graphical functions.

Completion: conformal symmetry.
Approximation: replace a subgraph with a sum of simpler
graphs with the same low order ε expansion.
Rerouting: subtraction of subdivergences with simpler graphs
to reduce the pole order in ε (F. Brown, D. Kreimer).
Integration by parts (in particular spin > 0 or dimension ≥ 6).
Special identities: Twist, planar duals. . .
Parametric integration: HyperInt (F. Brown, E. Panzer).
. . .
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Comparison with classical techniques

Momentum space techniques are more general (masses, Npt
functions).
Momentum space techniques can also be applied to graphical
functions (master integrals).
The theory of graphical functions performs integrations.
The large set of constructible graphs is always computable
with graphical functions (to sensible orders in ε).
It is not necessary to solve large systems of linear equations.
One always obtains a reduction of complexity by integrating
out some vertices of the Feynman graph.
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Results

Calculation of many primitive φ4 periods up to 11 loops (and
primitive φ3 periods up to 9 loops) which lead to the
discovery of the connection between motivic Galois theory and
QFT (the coaction principle, the cosmic Galois group).
φ4 theory (4 dim.): 8 loops field anomalous dimension γ.
7 loops β, mass anomalous dimension γm, self-energy Σ.
φ3 theory (6 dim.): 6 loops field anomalous dimension γ, β,
mass anomalous dimension γm.
5 loops self-energy Σ.
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QED and Yang-Mills theory (with S. Theil)

A sizable subset of Feynman periods can be calculated
immediately.
One can increase the number of known Feynman periods by
calculating kernel graphical functions.
One can use IBP identities to reduce an unknown Feynman
period to known Feynman periods.
A combination of both techniques can reduce the complexity.
For six loop primitive graphs in φ3 theory:
M. Borinsky, O. Schnetz, Recursive computation of
Feynman periods, JHEP No. 08, 291 (2022).
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(De-)construction

Laportaperiods

(numbers)

kernels

(graphical functions)

identities

deconstruction construction
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HyperlogProcedures

HyperlogProcedures is a Maple package that performs
calculations using graphical functions and GSVHs.
It is also a toolbox to handle multiple zeta values (MZVs)
including extensions to second (Euler sums), third, fourth, and
sixth roots of unity.
A large number of manipulations for hyperlogarithms
(Goncharov polylogs) are implemented in
HyperlogProcedures.
HyperlogProcedures has the results for the renormalization
functions in φ4 and φ3 with a large number of extra data.
HyperlogProcedures is available for free download from my
homepage.
https://www.math.fau.de/person/oliver-schnetz/
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