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m Worldline representation of the QED S-matrix.
m One-loop photon amplitudes in vacuum.
m One-loop photon amplitudes in external fields:

m Constant fields.
m Plane-wave fields.
m Constant plus plane-wave fields.

m Multi-loop photon amplitudes.

Some remarks on gluon amplitudes.



Worldline representation of the QED S-matrix

Feynman 1948, 1950, 1951: Representation of the perturbative QED S-matrix in terms of particle path integrals
interconnected by photons in all possible ways:

Equivalent to Feynman diagrams, but
Avoids the break-up of the scalar/spinor lines or loops into individual propagators.

A priori does not require ordering of the photon legs along a line or loop.
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One-loop N-photon amplitudes in scalar QED

dT .
r[{ki’ Ei}] = (7ie)N/? eisz Dx Vs/gal[khgl] ce Vsﬂal[kNvgN]67 fOT dTTZ

Vséal denotes the same photon vertex operator as is used in string
perturbation theory,

;
VA [k, e] = /0 dr e - x(1) ()

The zero mode xp = % fOT d7x(7) factors out and produces the
momentum conservation factor (27)P5(>" k;).



Master formula for the N-photon amplitudes in scalar QED

Polyakov 1987, Bern-Kosower 1991, Strassler 1992

oo dT D _ 2N T
kel = (i [T @ 2T [T
0 =170
N . 1.
X e><p{Z:1[E Gijki - kj + iGjk; - ej + EG,'J'E; : Ej]} Nin(ey,...,ep)
inj=
2
(n—m7)
G(71, T = 1 — T2| —
(11, 72) |T1 — 72| -
. (m1 — 7m2)
G(r1,m2) = sgn(m 77’2)72#
.. 2
G(r1,m2) = 25(m1—72) — -

T is the proper-time of the scalar particle in the loop, 7; parametrizes the position of photon /i along the loop.



Master formula for the N-photon amplitudes in spinor QED

Spin can be incorporated by an additional Grassmann path integral
(Fradkin 1966).

In practice it is usually preferable to use a certain integration-by-parts
algorithm, removing the Gj;, and the Bern-Kosower replacement rule

Giviy Giyiy * ** Giyiy = Giviy Gioiy =+ * Giiy — GFiviy GFiis * * * Gy

involving the “r-cycles” Gy, G, - - - Gj,i; and the fermionic worldline
Green's function G,

Ge(7,7") = sgn(r — 7')

Bern and Kosower 1991 (on-shell gluon case), Strassler 1992 (off-shell
photon case), C S 1997 (maintaining full permutation invariance)



Worldline representation of the four-photon amplitude

After the IBP, the four-photon amplitude in spinor QED appears naturally decomposed as follows:

4
Mspin(ki, €1, ..., kase4) = —%(r(l) N S r(s)) )
87
(6 1 (1) (1) (1) (1) (1)
r = Tli2aa) T2sa) T M(1243) T(1243) T M(1324) T(1324) °
(2  _ (2) (2) (2) (2) (2) (2)
= T T<12)(34) + T3 )T(13)(24> + r<14><23) Taaes) »
3 3)r,
o = 22 s r 123): (123 + 72 o 234 234): + Z I'(341 T3412 + Z r )i (412 )
(€O I (4) (4) 4
r - Zru)"Tu +Zru)
i<j i<j
6)
r - g l/)l/ u + g G



Tensor basis for the four-photon amplitude

(1) _
Ty = Z(1234),
(2) =
T(12)(34) = 2x(12)Z,(34),
@)y _ rg - fg - ki .
o = Z3(123)7r4 T 1,2,3,
(4) _ ki - f3 - fa - ki .
i = 2012 Tk i=1,2,
5) kifs-fa-kg
Ty = 20 TIEE L )= 02,00,
fl.‘w = k,.”s,»" — ef‘kfv , (photon field strength tensor)
. 1
Z(ij) = Etr(f,fj) =c¢i-kigj - ki — ;- ejki - ki,
n
Zp(itip . . ip) = tr(H f,j) , (n>3). (“Lorentzcycle’")

=1



Coefficient functions for the four-photon amplitude

4 4
r) /oo a1 -8 2T /1 TT eu r (G e%Tzi,jzl Gijki-kj
e o T 0 - LR y
=1
1 s
r21;34) = G12623G34Ga1 — Gr12Gr23GF34 Gra1 »
» . .
FEI;)(M) = (G12621 — Gr12GFo1) (G34 Gas — Gr3aGraz) »
3 s .
r51;3)1 = (G12623G31 — GF12GF23GF31) Gat 5
4 . .
FEIL)H = (G12621 — GF12GF21) G13Ga1
5 . .
rﬁllm = (G12621 — GF12GF21) G13Ga2

2
Gi = |u— | — (4 — )

Grj = sgn(u — uj)



Results on four-photon amplitudes in the worldline

approach

In previous work, the coefficient functions have been evaluated for
the off-shell case, but with two legs taken in the low-energy limit:
N. Ahmadiniaz, C. Lopez-Arcos, M. A. Lopez-Lopez, C. S., Nucl.
Phys. B 991 (2023) 116216, Nucl. Phys. B 991 (2023) 116217.

In preparation: Victor M. Banda, James P. Edwards, C.
Moctezuma Mata, Luis A. Rodriguez Chacén and C.S.:
On-shell coefficient functions for both scalar and spinor QED.

Tables of worldline integrals that allow one to do all integrals
without fixing the ordering of the photons.
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Worldline integrals with four on-shell legs (1)

T
A= ) [(Glz + Gs4)s + (Giz + Gu)t + (Gig + Gz3)U]
! 2 1(Giat Gus— Goa)uT
dug " = + i i 02(G12+Gi13— G
0 u—+ Glzt + G13S u— G12t — G138

[ N

T t+ G23S + Gzlu t— G23S — G21U
L1
T

:| L(Gra+ G —Gu3)tT
:| 62(613+GZ3 Glz)ST

+
|:S+ G31U+ G32t S—G31U—G32t
(1)



Worldline integrals with four on-shell legs (2)

-
5 [(G12 + G34)s + (G13 + Gaa)t + (Gia + G23)u]

/1 dug Gap " [ i + 8
u, e = — o - - -
o M T2(u+ Grat + G13s)2  T2(u — Grat — Gi3s)?
+ _ 2 _ _ _ 2 ] ] e%(612+613*523)u7'
T(u+ Giat + Gizs) T(u — Giat — Gi3s)

8 8
- - - + n -
[ T2(t + Go3s + Guu)2  T2(t — Gpzs — Goryu)?

: ?Gu i _ ‘2G12 i ] e%(512+623—613)tT
T(t+ Gazs + Giu) T(t — Gpzs — Gpyu)
8 8
+|— - - + - -
T2(s + Garu + Gzpt)? T2(s — Garu — G3pt)?
263 2Gy3

- - _ — : _ ] 03 (G13+G3—Ga)sT
T(s + G31u+ G3zot) T(s — G3ju — G3ot)

@



Example of a coefficient function (1)

0 dT 4D 27 TA & o oa ) @) Bs —1
2 =
/0 = T e ‘/(4) e G12Go1 G13Gyo M2y + M2y In et

B(s, t,u) + r((fg)lzé(s, u, t) + 19 B(t, u,s),

(8)
+r( (12)12

8
12)12

Here we have introduced

g

Bs =14/1— -, 5fa51/1+u:1/1* - —.
ta

w | =
| =
IS

@) Be — 1)
+r In
(12)12 (Bg 11

4 Ba—1 5 gs —1\1° 6 g —1\1? 7
+’((1;)12 In <5a n 1) + ’((13)12 {'“ (Bg n 1)] + ’((12))12 ['" <ﬁ;+ 1)] + ’((12))12

(22
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Example of a coefficient function (2)

The functions r( ) are rational, and all dilogs are contained in a single integral E’(s, t, u),

1 (10)
(12)120 > M(12)12

m2 —s(1 — x)x m2 — t(1 — x)x

1+ Bg
B(smu)sit/oldx[s(zwru)(lzx):(2s+u)(12x)]ln("2)'

1—Bs
2

X —
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Incorporating a constant external field

To generalize all the previous formulas from vacuum to a constant
external field, just

Change the worldline Green'’s functions Gg, G¢ to field-dependent
ones Gg, GF,

T (2 e
Gg(r1,72) — Gg(m1,m2) = ( e_'ZGB”-l-lZGBlz—l)

222\ sinZ
e—/ZGBu
Ge(mi,m) — gF(TlaT2):GF12W

where Z,, = eF,, T.

Add global determinant factors

S

z z
det%[ z] (Scalar QED), det%[t

—Z ] (Spinor QED)
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N-photon amplitudes in a constant field

Master formula for the scalar QED N-photon amplitudes in a constant
field (Shaisultanov 1995, Reuter, Schmidt and C.S. 1996)

Fecat(kiye1; - -5 knsen|F) = (—ie)"

> dT -3 —m T
X/O 7(471'7—) det I:SHIZ:| / dT,

N

xexp{Z[ ki Ggij - ki — ie; - Ggij - kj + 5: G - EJ]}

ij=1

E1€2' " EN
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Applications and generalizations

N = 2 (vacuum polarisation in the field) becomes very simple (C.S.
2000).

Magnetic photon splitting (Adler and C.S. 1996).

Two-loop Euler-Heisenberg Lagrangians (Reuter, Schmidt and C.S.
1996, G.V. Dunne and C.S. 2000).

One-loop photon-graviton conversion in a constant field (Bastianelli
and C.S. 2005, Bastianelli, Nucamendi, C. S. and Villanueva 2007,
Ahmadiniaz, Bastianelli, Karbstein and C.S. 2021 ).

N-photon amplitudes in a constant field in the low-energy limit
(N. Ahmadiniaz, M. A. Lopez-Lopez and C.S., PLB 852 (2024)
138619).



Low-energy limit of N-photon amplitudes in vacuum (1)

After the removal of the G--'.s the low-energy limit can simply be taken by replacing the universal exponential factor

1 4
=TT, Gjikj-k;
e? 25 j=1 Cighikj by unity. E.g. for N = 4:

00 dT 4D _m2T
— T 2 m / du; T
/0 T H i)

Then all terms in the integrand that are not just products of cycles turn into total derivatives and integrate to zero:

rﬁ;u) = G12633634Ga1 — Gr12Gr23Gr3aGran
r&)m) = (612621 — Gr12Gra1) (G34Gas — Gr34Graz) s
r(3;3)1 = (612623631 — GF12GFa3Gra1) Gat
r(4;)11 = (G261 — Gr12Gra1) Gi3Can
% = (612621 — Gr12GF21) G13Gaz -




Low-energy limit of N-photon amplitudes in vacuum (2)

The cycle-integrals can be done in closed form, leading to Bernoulli numbers Bj,:

1 .
/Oduldu2 ... dup (612623 ©o+Gpi — GF12Gpo3 - - - GFnl) =(2—-2")bn

b — 72"5—‘" n even
n = n
n odd
This leads to the closed-form expression
N D o
(LE) L _ TN - 3) 2m—1, P2m
Tepin (kL etie .o kn,en) = (—2)W exp 2:1(1—2 )Ztr(
m=

where fiot = Z,Nzl fi.

2m
ftot)}

fl...fy



Low-energy limit of photon amplitudes in a constant field

In the constant-field background, it is still true that the N-photon amplitudes can, in the weak-field limit, be
reduced to terms that factorize into cycles. However, since the generalized worldline Green's functions are
non-trivial Lorentz matrices, these do not any more factorize into “r-cycles” and “Lorentz-cycles”, instead they
combine like

Giviy Gigig * * * Gipiy Zn(iriz - - - in) — tr (fil “GBiyiy * fiy * GBinig ** fip gBinil)
Thus the basic mathematical problem becomes the computation of the “open-index cycle integral”
1 1 . ) .
/o duy - - - /0 dup Gp12 @ YB3 @ - -+ ® Im

which at first seemed to generate a large number of component integrals. However, it turns out that there is a nice
way of avoiding this. Let us show it for the purely magnetic-field case.



Magnetic worldline Green's function

The magnetic worldline Green’s function has the matrix decomposition
Gp(71,72) = Giog— + Sp12(2)g+ — Ap1a(2)iry

where z = eBT, Gy = sgn(7; — 2),

1 0 0 0 0 0 0 0
_| 0o 1 0 o0 _| 0o 0o o o
& =10 0o o o |> & =| o0 0o 1 0o [’
0 0 0 0 o 0 0 1
o 1 0o % oo 0’0
L —| -1 0 0 0 , | 0o 0o 0o o0 ®)
+= o o0 o o0 | - = 0 0 0 1
0 0 0 0 0 0 -1 0
sinh(z Gy2)
Sgi2(z2) = ————
sinh z
cosh(z Gy) 1
ABIZ(Z) = - . T -
sinh z z



The magic magnetic master integral

Introducing the function

Hji(z) =
U( sinh z z

the three component functions of the Green's function can be written as

Gj = H;(0)
1
Sei(2) = S [Hi() + Hy(—2)]
1
Asi(z) = [H(e) — Hy(—=2)]

The nice thing about this function is that it is self-reproducing under folding:

T Hu(z)  Hy(2')

HP(z,2) = / drjHy()Hy (') = Sy T2

0 zl —z z—z
(3) o _ T T ’ 1
H; (z,2',2") = /o d‘rj. A d‘rkH;j(z)ij(z YH(z'")

Hi(2) Hi(2") Ha(2"!
I A I ) I P ()
) Hiyip iy (i)
HY) (am) = Vi1

k=1 1_[/41((2/ = z4)



Application to the low-energy photon amplitudes

Defining
zp=0, zp =z, z=-z
and
1 3 1 )
g=g-, 0+= 5(g+ —iry), g- = 5(g+ +iry)
we can now write
1 1 . . . (n)
duy - - - dup Gp12 @ G2z ® * -+ ® Upn(nt1) = Z Hl("Jrl)(Zalw-wZa,,)Qal ® @ Fap

0 0 (3 RERRRYe 7}

where each index «; runs over 0, +, —. This reduces the calculation of the low-energy limit of the magnetic

N-photon amplitudes to simple algebra and a single global proper-time integral with trigonometric integrand.



N-photon amplitudes in a plane-wave background

The plane-wave background can be defined by a vector potential A(x) of
the form

e (x) = a,(n-x)

where n* is a null vector, n? = 0, and as is usual we will further impose
the light-front gauge condition n- a = 0. Until recently it seemed
intractable in the worldline formalism, since it leads to path integrals that
are far from gaussian. Only in 2019 a way was found to rewrite the path
integrals for the N-photon amplitudes in scalar and spinor QED in terms
of gaussian ones.



N-photon amplitude in a plane-wave background

Master formula for the scalar QED N-photon amplitude in a plane-wave background
James P. Edwards and C.S. 2019, Phys. Lett. B 822 (2021) 136696.

N N
S \Njp \3 1 2 oo —ix SN KT
Mecal((hineitia) = (-0 @?s( K)S(C K)S(3 k1) [ g o770 Bk
i=1 i=1 i=1 e
N
. /oo E(MT -D H/ dr, = J L[5 Gjkiki—iGie; kit Gje;e;]
0 T -1

o (M@ = (an?) T2 SN ki (1) = )) =2 S (alr) — ((a)) <

e1en

where we have introduced light-cone coordinates and

(N =

/OT drf(r)

~l=



The fermionic worldline Green’s function for spinor QED

Contrary to the constant-field case, the generalization to spinor QED requires the explicit evaluation of the
Grassmann path integral (no replacement rule). The appropriate generalization of the vacuum correlator
(T (7)) = %sgn(f — 7Y is (James P. Edwards and C.S. 2019)

W () = Sep (),

where

TZ
L (r, 1) = {5*“’ +2int TV (r, 1)+ 2ig M (7 ) + 2[J2(T, ') - T((a/))z]n“nV}GF(T, ')
and we have further defined

N A COEEAN R

’ ’ T ’ /
Tu(r, ) = Ju(r) = Ju(r') = ;G(T,T )((a“))A



The combined constant and plane-wave field

The arguably most complex background field for which the Klein-Gordon and Dirac field can be solved in closed
form is the combination of a constant and a plane-wave field where the directions of the magnetic and of the
electric field coincide with each other and the direction of the wave propagation (Redmond 1965, Batalin and
Fradkin 1970). Very recently, we have obtained for this background the following master formula (C.S. and R.
Shaisultanov, PLB 843 (2023) 137969)

N oo xt SN~
Fscat({ki,ei}ia, F) = (—ie) (27'r Zk )5 Z (Z k,+) / dxar e %o Yit1 ki
i=1 Voo

i=1

B o 1
] / drie ’J1[2k,'»QB,-j»kj715;«93,-1-«kj+§5;»93,-j»5j}

oo dT _D 1
X / — (47 T) 2 det2 [
0 T sinZ

e [m2+% jOT dr jOT dTlg(T)'éB(T,T/)-g(T/)} TfEi:l -/0 dr [5(7’)-QB(T,T/‘)-ki+/‘5(T)'C;B(T,T")~E,‘}

ey-Ey

where now

N
u(x; +n- > [=iGg(r, ) ki + Gp(r, ) - Si]) .

i=1

Lt
3

3
2

Il



The fermionic worldline Green’s function for the mixed field

Sr(nr) = el T/)+2i[n®](7—) - Gr(T, T/)*QF(T,T')-n@)](T/)}
+ Qi{gF(ﬂ‘, 7'/) . ](7-’) ®n— ](7-) ® n- Gp(r, 7_/)]

+2.]2(7')n @ n-Ge(r, ')+ 2GF (T, 7'/) n® I'IJQ(T/)
—4J(7) - Gp(r, ') - J#)n@n

iT ’ ~! ~/
e [Gr(r.7') - (n® ((BA))Fmx = ((3))Fmx @ n)
—(n® (@) Emy = (8 Emy ® n) - Gr (7, 7))
22‘“_7)\& [<<5i\>>Fm>\ I GE(r ) - n @0+ ((B\)Emy - J(T)n @ n - Gr(7, 7')

—(J(r) - Gr(r, 7Y mA UGN F + (@A) Ems - G(r,7') - T & ]

72 [<<s’>>% KEDY:

> g,:(r,-r/)»n®n+ > Fn®n-g,:(7—,7—/)

~ (&N F - Gr(r, ) (@)@ n] .



The fermionic worldline Green's function for the mixed

field (2)

Here my = %(Lii,O’O)

Ty = > m e_z%(z”“ﬁ)/ df(c‘?&(?) - <<5/>\>>F) 2T (@A)
0

A==+

where z, = eBT, z; = ieET

. 2(z) 4+ Azy) . (g ) T=T
(@) = = "_Qz”m / d78) () XA AT

In progress (C.S. and R. Shaisultanov): application to the vacuum
polarization amplitude in the mixed field.



Quenched multi-loop photon amplitudes

Dealing with the amplitude as a whole becomes important when one uses the one-loop amplitudes to construct
higher-loop amplitudes by sewing:

From the four-photon amplitude we can construct the two-loop quenched photon propagator,

OB WA

From the one-loop six-photon amplitude we get the three-loop quenched propagator

This type of sums of diagrams is known to suffer from extensive cancellations...

etcetera



Multi-loop worldline Green's functions

M. G. Schmidt and C.S. 1994: More efficient than sewing is the use of
multi-loop wordline Green's functions that hold the information on
photon insertions. For a single insertion,

(1) B 1[G(71,72) — G(71,76)][G (T2, 72) — G(7b,72)]
e (mom) = Galn )+ T+ G(ram) |

where T is the proper-time length of the inserted propagator, and 7,, 75
the points on the loop between which the propagator is inserted.

It leads to integral representations for the /-loop photon propagator
naturally written in the variables

Galb17 Gasz MR ] Ga/b/a Calblagbza MR ] Ca/,lb/,la/b/

where the G,,p, depend only on a single propagator, and the C;,p,,5 on
pairs of propagators.
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Two-loop vacuum polarisation in scalar QED

V.M. Banda and C.S. (in preparation): compact integral representation
for the two-loop photon polarization function in scalar QED,

6 o0
2 e T _ D/2
n£c3|(k2) = _2(47T)D/0 TD+1°¢ " T/ dT/ dTa/ dTp7,p

T T Yab ~2\12
></ dﬁ/ drp e (G2 B
0 0

. ab - . 2 1

| = D(—c,;,b+ﬂc;g,,)(—c;u—V’Jalcazc‘)f2
- a 1
(=Gt = 2260 C)(~ G + 226 C) + (143 2)| 15

—[0.C — %G‘ab Cl[9sC + 7;" Gob C] (Gl2 + 7;" 8, C c)

(Yab = (T + Gap)™Y)



On-shell N-gluon matrix elements

When computing the on-shell N-gluon matrix elements, we have to use the full connected amplitude, not just the
irreducible one. Following Bern and Kosower 1991, the additional one-particle-reducible terms can be obtained
from Qp by the following procedure:

(i) Draw all possible ¢3 1-loop diagrams D; with N legs, labelled 1, ..., N (following the ordering of the color
trace). Diagrams where the loop is a tadpole or isolated on an external leg can be omitted. E.g. at the four-point
level there are single and double ‘nim‘h“ anhy .\

~ ~

A

3

(ii) A diagram will contribute if each vertex e;cept the ones attached directly to the loop corresponds to a possible
pinch. A vertex with labels i < j can be pinched if Qp is linear in Gj;. The pinching replaces this G;; by a factor of
2/(ki + kj)z, removes the vertex and transfers the label i to the ingoing leg.

-+ -loop

The 7; - integration is omitted and the index j replaced by i in all Gy, Ck,. The pinching can thus be represented
by a pinch operator Dijj,

. o

Dif(G) = — F(G)| ¢
if(©) aG; ( )‘ Gjj=0
ijaG,ﬂk

(N. Ahmadiniaz, F.M. Balli, C. Lopez-Arcos, A. Quintero Velez and C. S., PRD 104 (2021) L941702)).
The trees are to be “pruned” recursively starting with the outermost vertices.



Berends-Giele Currents

Returning to the Bern-Kosower formalism, without the pinch rules we would have to construct the reducible
contributions attaching off-shell currents to the loop:

Such currents were recognized as central objects in Yang-Mills theory since the eighties:

m  They are naturally written in terms of multi-particle polarizations (F.A. Berends and W.T. Giele, NPB 306
(1988) 759) and then are called Berends-Giele currents.

m  They are instrumental in the perturbiner approach where tree-level amplitudes are constructed directly
from the field equations (A.A. Rosly and K.G. Selivanov, PLB 399 (1997) 135, S. Mizera and B. Skrzypek,
JHEP 10 (2018) 018).

m They are important building blocks for amplitudes obeying color-kinematics duality (Z. Bern, J.J.M.
Carrasco and H. Johansson, PRD 78, 085011 (2008)). This requires a specific gauge, BCJ gauge.




Multiparticle polarizations and field strength tensors

Multi-particle polarization tensors:

ely = lez-hach — e, " — (1 2)]
E’:L[L23 = %[(k?’ . 612)5? — (k12 . 63) €f2 + 612Vf;/u

1
_531/'(11;”] - kfz3151 ~epe3 - (ko — k1)
etc.

Multi-particle field-strength tensors:

fly = e-kff" —(AR)" —(1+2)
fl% = kf235523 — k12 - kaepes

—ki - ka(elens +elsen) — (1 < v)
etc.



BCJ gauge and generalized Jacobi identities

The multi-particle polarizations are subject to generalized gauge
transformations. To construct currents in BCJ gauge, they must
obey the generalized Jacobi identities

H M _ M i 17 o
€03 T €513 =0, €yt 63, +e53, =0, etc.

(C.R. Mafra and O. Schlotterer, JHEP 03, 090 (2016)).



Multi-particle polarizations from pinching

Clearly the Bern-Kosower pinching procedure must hold the information on the Berends-Giele currents. It turns out
that to obtain the currents, it is sufficient to look at the maximal pinch of the N-gluon amplitude, defined by the
consecutive pinching of N — 2 adjacent legs. It corresponds to the Bern-Kosower diagram

(which in the original Bern-Kosower rules was actually discarded, since it is absorbed by the gluon wave-function

renormalization).

Only single-cycle terms contribute to it, thus in its calculation we can replace Qp by GN = Q,z\, + ngv + ... Q,\’\,’.

It turns out that the (N — 1) - field-strength tensor G/;«U»-(N—l) can be harvested through

A =2
Dy PsPr2Qu = 357 (v 3y fwwnCin
and (less obviously) the (N — 2) - polarization tensor £5...(y_2) directly from the (N — 2) - tail:

Dyn—z) - P3P12T(1,2,...,N=2) = e vz kn-1Gin—1) +c12...(v—2) - kn G

(N. Ahmadiniaz, F.M. Balli, C. Lopez-Arcos, A. Quintero Velez and C. S., PRD 104 (2021) L941702)



BCJ gauge comes for free

It turns out that these polarization and field strength tensors automatically fulfill the generalized Jacobi identities.
This can be shown using the natural mapping between the Bern-Kosower pinch diagrams and the Lie-bracketing
algebra for N ordered legs,

[[1,2],3] [1,[2,3]]

etc.

The proof does not involve any specific properties of the integrand, i.e. it would work with any symmetric
polynomial in the Gj;.



Constructing the tree-level N-gluon amplitude (1)

N. Ahmadiniaz, F.M. Balli, O. Corradini, C. Lopez-Arcos, A. Quintero Velez and C. S., NPB 975 (2022) 115690

To compute the N-gluon tree-level amplitude:

I8 Use the above to calculate the generalized polarization tensor £y _1 in BCJ gauge.
N—1
(in the above paper we calculate them up to multiplicity five).

Sum over all pinch diagrams to this order to construct the color-stripped Berends-Giele currents

Mmoo
Al =

w .
A12---(N—1)'
w
AT
n
A2
-
Alazy =

I

El y
7
“lL,21
)
512
© ©
1,213, ClLR3)
S125123 5235123
7 1 I e I
€ € € € €
1,2],3],4] 1,[2,3]],4 1,2],[3,4] 1,[[2,3],4 1,[2,[3,4]
1035 (P 15 P I 8 5 O X 1
$12512351234 512351234523 51251234534 512345235234 512345234534

The denominators can be read off from the pinch diagram.



Constructing the tree-level N-gluon amplitude (2)

From this we can get the colour-ordered partial amplitude of N gluons through the Berends-Giele formula

tree _ m
AL, 2, N) = st (v )ALy (1) AN

The factor S12...(N—1) is inserted to cancel the final off-shell propagator, and the factor ANM = ey Puts
the final gluon on-shell.

n The color-dressed Berends-Giele currents A/;Q-u(N—l)
A}1L2~-~(N—1) by summing over all inequivalent orderings ((2N — 5)!! terms in total), and supplying color
factors that (by color-kinematics duality) have the same Lie bracketing structure in color space. E. g.

are obtained from the color-stripped ones

s T a3
+ b
Cﬁ1.2],3] = falaz fba3 :




Constructing the tree-level N-gluon amplitude (3)

E.g. For N = 5:
) EM 2 E“ ) 5#
o [[[1 2],3),4]° [[[1 21,3, 4] “{l12.21,41,31%[([1,2],4],3] i MM[1,31,41,2]7[[1,3].4].2] n [[12,3],41, 117 [([2,3].4].1]
1234 S12512351234 512512451234 S13513451234 523523451234
cff ek cff ek
M[2.3],2],4] 3,24 [[[1 41,21,31 %] [[1 4,23, [[2,41,3],2] 43,2 [[[2 31,114 [[2 3],1.4]

513512351234 514512451234 514513451234 523512351234

fean3eans | Geasiieany | Teanapans | faeea
524512451234 524523451234 534513451234 534523451234
21, 3,41 (11.,2]13,4] . e aiea | Gaeaaes
51253451234 51352451234 51452351234 ’

From this we get the total tree-level N - gluon amplitude,

tree __ 1%
A = s12 (V=) A (v 1) AN



Things that had to be left out

Photon- dressed electron propagator in vacuum and in a constant crossed field
Feynman 1951; Fradkin 1966; Fradkin and Gitman 1991; M. Reuter, M.G. Schmidt and C.S. 1996,
N. Ahmadiniaz, V.M. Banda Guzman, F. Bastianelli, O. Corradini, J.P. Edwards and C. S. 2020:
Worldline master formulas for the dressed electron propagator, part 1: Off-shell amplitudes, JHEP 08
(2020) 018
Worldline master formulas for the dressed electron propagator, part 2: On-shell amplitudes, JHEP 01
(2022) 050

Berends-Giele currents for Gravity (N. Ahmadiniaz, F.M. Balli, O. Corradini, C. Lopez-Arcos, A. Quintero
Velez and C. S., PRD 104 (2021) L941702)). Nucl. Phys. B 975 115690 (2022),

Photonic processes in Coulomb and Sauter backgrounds.

etc.



