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Context: antenna subtraction scheme

e Antenna functions
Built from simple matrix elements
Mimic the divergent behaviour in singular limits

Can be easily integrated over phase space
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hard partons * m

e Initial-final antennae:

Initial and final states
hard radiators




This work:

Rederivation of NNLO 2 — 3,2 — 2 IF antennae

o Known but required a lot of hands-on labour P#'¢o- @ehrmann-be Ridder,
Gehrmann, Luisoni (2009)

o Go higher in the e—expansion [N3LO]

o Develop a more automated workflow

Building blocks:
NNLO phase-space integrals for DIS




NNLO DIS

kinematics invariants
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» Write down the forward DIS scattering amplitude at NNLO
o Find physical cuts

o 2 cuts — phase space?2 — 2 @ 1loop

o 3 cuts — phase space 2 — 3 @ tree level

o FINAL STATE e FINAL STATE
PAKTICLES PARTICLES

* Write all integrals as a function of a minimal, linearly independent set of
master integrals using IBP identities



master integral families
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DEs for master integrals

wiki How to solve a differential equation:
» Generic solution

« Boundary condition

Generic solution

. Canonical formd,g = €A -g Libra

» Generic solution in terms of iterated integrals
Alphabet:
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Are we
finished?










Boundary conditions

« Consistency conditions
Finding relations between boundaries
» Evaluation in some kinematic limit

Fix the remaining ones



Consistency conditions

We look at the kinematic limitz = 1 = s — 0 (soft limit)

IRR ~ (1 — zyn2e 2 c(e)1—z), n€Z
J

Extract the leading behavior of the Mls

Rescaling the integrals w.r.t. their leading behavior — regularity

Imposing that in this limit the terms log(1 — z) and poles in (1 — z) vanish

Relations between boundaries of different Mls



RV

IRV ~ (1= "2 ) dfe)(1 — 2y + (1 =)/ Y efe)(1 -2y, m,L€Z
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» Extract the leading behavior of the Mls

» Rescaling the integrals w.r.t. their leading behavior — regularity

 Imposing that in this limit the terms log(1 — z) vanish

» Relations between boundaries of different Mls



Now we need to fix the
remaining boundaries!

IFR ~ (1= 2% ) cile)1 =2V, n€Z

l

J We need ¢y(€)
IRV~ (1= 2)"7% ) die) (1 =2V + (1= 2)7 ) efe)1 2, myl €Z
/ / We need dj(¢€), ey(€)

- Analytic boundaries

Wishlist:

» General algorithm to obtain them



AMFlow framework

» Fully numerical

» Evaluate Fl at any loop order in a non-singular point

Add aux mass ;72 to some propagators — auxiliary family

Derive DE with respect to the mass IPYs(e,7) = 1%(e, Z,n%)

anz Jaux — An . Jaux

Boundaries @ ;72 — 00 (easy!)

“Flow” ;72 — () for physical solution: 12im aux — phys
n-—0

All implemented in a MATHEMATICA package



Analytic
Auxiliary
Mass

Flow
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AAMFlow

» Fully analytical — can be used near singular points

Outline:

Add aux mass ;72 to chosen propagators:

« limits in kinematical variable and ;72 need to commute
Derive DE with respect to 172 & solve it

Fix constants of integration in ;72 — 00 limit (easy!)

“Flow” to n* — 0 for physical solution:

« method of regions to extract the physical solution



We look at the boundaries in z — 1: kinematical endpoint singularity

% “Conservation of complexity”:

% We add an auxiliary mass to one/some propagators

% This complicates the DE system
% But makes the boundaries trivial

% We look at the integrals in a certain limit to simplify the DE
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RECIPE:

Choose a family for which to calculate the boundaries

Choose propagators to which add an auxiliary mass
Derive DE with respect to u = 1/n?
Fix constants of integration in limu — 0

Limit #* — 0 & disentangle regions

Extract physical region



Proof of concept

F~ (=27 ) gl —2), mEeZ
J
- We need c,(€) of this top sector:

IPHYS IA UX
\

\

- Add auxiliary mass — auxiliary topology

8 master integrals

. Differential equation wrt u = 1/n? for the Co(€)



Intermezzo: large mass limit

Beneke, Smirnov (1997)

« Depends on scaling of loop moms

soft k ~ O(1) or large k ~ O(n)

e SOFT propagators:




« Example:

Integrated 2 — 3 phase space



k ~SOFT k ~ LARGE

rlz
g i, ()

- Most complicated soft region
. D.depends only on kinematics - All large regions are massive tadpoles
J



Solution of /Y (1)

2u 1 1
AV = S y_1+2€2 — {Z (ZH_l(u)) + - (4HO,_1(u) +4H_; _(u) — 4H_2,_1(u)>
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What we want

PHYS __
IPHYS N (1 . Z)n_2€2 Cj(G)PHYS(l - Z)j, ne7 C()(G) — CO(G)

What we have

IAUX o (1 . Z)n—ZGZ Cj(€, },])AUX(I _ Z)j, ne/g
J



lim IAUX — IPHYS()
772—>O,z—>1
aka
lim = ¢,(€)?
n—0

Not really...




limc (c.77) =
n—0

cole)+n~cd,(€) + n~*dy(e)

Extract the hard region from the

vanishing mass limit!

B0 0



Flow to vanishing auxiliary mass

We take naively the limit ;72 — 0 in our solution and obtain this expansion:

o0 k
— Z e” o+ 2 Ml logm(n)]
k=min m=1

I kKnown!

Since we also know the analytic structure of the limit

= cyle)+nd(e) + ﬂ_zedz(G) + O(n)

Hard region = physical region



We can obtain e.g. C(g()) by comparing the two e—expansions

— 7‘0,0 + ...+ 67'1,1 lOg(ﬂ) + ... T+ 62}/‘2’2 Ing(}/])
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— 7‘0,0 + + 67'1,1 lOg(Vl) + + 627'2,2 lng(Vl)

= 04 g0 4 40)
¢ty +d, 10.00 711> 2.2 known!
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Set up this system of eq.s dl 2d2 — .15
to obtain céo) dl(())/z 1 2d§0) = 155,

c(+d? + & = 1y

Repeat for all € orders!




- Analogous system for all c(gi)

* Fixed all e—expansion of hard region:

lim/=(1-771"%{ —— + + +—c¢

e 6¢ 3 72

2 2
+<562.§5  TArn’¢; )€2+ (1557:6 19143 )63
5 9 1008 9
+@(e4)} + @((1 _ Z)O)

{ 1 57 38 74

» Same procedure for RV-integrals




Reduction of constants

0 1Y% = A - 'YX solution in terms of H(u) @
Easier to take the limitu — 0 (7 — o)
Analytic continuation to perform the # — 0O limit —
¢

H(u) — H(1/n)

» This generates constants evaluated at 1 over the alphabet

1 1 1 1
LAy = 0y = = , W_» FUTIS

— » W_1/2 =
X 1 +x 2+ x 1/2 +x
» Replacing2 — ¢

- Fibration of HPLs of argument ¢, evaluation of t = 2 HPLs in terms
of known constants



Results

» Procedure applied to fix all nontrivial RR and RV boundaries \

» Required the following auxiliary topologies:

/ \

/7 / \

» Results used to derive IF antenna functions at higher epsilon order

0 &%



» Analytical extension of auxiliary-mass-flow method

« Feasible to study integrals near singular kinematical points

» Algorithmic procedure
Outlook : /.
« Derivation of IF antennae at 3 loops .

« Based on DIS kinematics. Layers of the calculation:
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Looking for UT integrals

Conjecture: Dlog integrand — UT

» Dlog candidates — find as many as possible that are linearly independent

.. Use of Baikov representation & package “DLogBasis”

« Current application on the first RRR family (19 Mls)
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o Challenges: =1

« Techniques for candidates that are UT but not Dlog
» Baikov representation of a forward kinematic integral

« Automatisation
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