

N-jettiness soft function at NNLO in QCD

Loops and Legs in Quantum Field Theory (LL2024)

Prem Agarwal, Kirill Melnikov, Ivan Pedron | 18. April 2024

www.kit.edu

Talk plan

This talk is mostly based in our work presented in hep-ph/2403.03078

- 1. Introduction
- 2. Soft function at NLO
- 3. Soft function at NNLO
- 4. Results
- 5. Conclusions

Introduction	Soft function at NLO	Soft function at NNLO	Results 000	Conclusions o

Higher-order QCD corrections (at NNLO)

Subtraction methods

Analytically removes $1/\epsilon^n$ poles by constructing integrable counterterms

Antenna subtraction

Gehrmann-De Ridder, Gehrmann, Glover - hep-ph/0505111

CoLoRFul subtraction

Somogyi, Trócsányi, Del Duca - hep-ph/0502226

Sector subtraction

Czakon - hep-ph/1005.0274, Boughezal et al. - hep-ph/1111.7041

Catani, Grazzini - hep-ph/0703012

Projection-to-Born

Cacciari et al. - hep-ph/1506.02660

- Nested soft-collinear subtraction Caola, Melnikov, Röntsch - hep-ph/1702.01352
- Local analytic sector subtraction

Magnea et al. - hep-ph/1806.09570

Slicing methods

Imposes cuts in some variable to split the phase space. Below the cut a soft-collinear approximation is used

q_t-subtraction

- N-jettiness subtraction
 - Boughezal et al. hep-ph/1504.02131, Gaunt et al. hep-ph/1505.04794

Introduction Soft function	t NLO Soft function at NNLO	Results	Conclusions o
----------------------------	-----------------------------	---------	------------------

N-jettiness subtraction

The *N*-jettiness variable, defined by

$$\mathcal{T}(\mathcal{R},\mathcal{U}) = \sum_{x \in \mathcal{U}} \min\left\{\frac{2\rho_x \rho_{h_1}}{P_{h_1}}, \frac{2\rho_x \rho_{h_2}}{P_{h_2}}, \frac{2\rho_x \rho_{h_3}}{P_{h_3}}, \ldots\right\}$$

Can be used to perform a slicing of the phase space (like in q_T subtraction)

$$\sigma = \int^{\mathcal{T}_0} d\mathcal{T} rac{d\sigma}{d\mathcal{T}} + \int_{\mathcal{T}_0} d\mathcal{T} rac{d\sigma}{d\mathcal{T}}$$

and, thanks to the factorization theorem from SCET, we can calculate

$$\int_{0}^{T_0} d\mathcal{T} \frac{d\sigma}{d\mathcal{T}} = \int B \otimes B \otimes S \otimes H \otimes \prod_i^N J_i + \mathcal{O}(\mathcal{T}_0)$$

troduction
Soft function at NLO
Soft function at NLO
Soft function at NNLO
Soft function at N

N-jettiness subtraction

$$\int^{\mathcal{T}_0} d\mathcal{T} \frac{d\sigma}{d\mathcal{T}} = \int B \otimes B \otimes S \otimes H \otimes \prod_i^N J_i + \mathcal{O}(\mathcal{T}_0)$$

- The beam function and jet functions (B and J_i) describe the initial- and final-state collinear radiation, the soft function S describes the soft radiation, and the (process dependent) hard function H encodes the virtual corrections
- At NNLO, all ingredients are known since years ago. The soft function was available for 0-, 1- and 2-jettiness, but only recently for generic N-jettiness
 (hep-ph/2312.11626, hep-ph/2403.03078)
- At N3LO, only the soft function is missing. There are current efforts to obtain the analytic N3LO 0-jettiness soft function (see Pikelner's talk)

Introduction	Soft function at NLO	Soft function at NNLO	Results 000	$_{\circ}^{Conclusions}$

Soft function calculation

- Previous calculations of the NNLO were mainly based on mapping the available phase space of soft-gluon emissions onto hemispheres and computing the required integrals numerically.
 (Boughezal et al. hep-ph/1504.02540, Campbell et al. hep-ph/1711.09984, Bell et al. hep-ph/2312.11626)
- Here, we use the well established subtraction methods to calculate this ingredient of a phase space slicing method, showing the *explicit analytical cancellation of divergences*. Also, in our calculation *N* is treated genuinely as a parameter.
- We show that borrowing ideas from generic NNLO QCD subtraction schemes is beneficial for computing ingredients of modern slicing calculations.

Introduction ○○○●○	Soft function at NLO	Soft function at NNLO	Results 000	Conclusions o

Soft function renormalization

Since loop-corrections are not present, the IR divergences in the soft function turn into UV ones that require renormalization. It is convenient to work in Laplace space

$$S(u) = \int_0^\infty d{\cal T} \; S_{\cal T}({\cal T}) e^{-u{\cal T}}$$

Since there the renormalization is multiplicative (with matrices in color space)

we write the expansion in powers of
$$\alpha_s$$

lf

$$S=Z\widetilde{S}Z^{\dagger}$$

Soft function at NLO

If we take $P_{h_i} = E_i$ with and unresolved gluon *m*, the *N*-jettiness is given by

$$\mathcal{T}(m) = E_m \psi_m = E_m \min\{\rho_{1m}, \rho_{2m}, \rho_{3m}, \dots, \rho_{Nm}\},\$$

where $\rho_{ij} = 1 - \vec{n}_i \cdot \vec{n}_j$. Then, the soft function is given by

$$S(\tau) = -\sum_{(ij)} \mathbf{T}_{i} \cdot \mathbf{T}_{j} g_{s}^{2} \int \frac{d\Omega_{m}^{(d-1)}}{2(2\pi)^{d-1}} \frac{dE_{m}}{E_{m}^{1+2\epsilon}} E_{m}^{2} \delta(\tau - E_{m}\psi_{m}) \langle S_{ij}(m) \rangle_{m}, \qquad S_{ij}(m) = \frac{1}{E_{m}^{2}} \frac{\rho_{ij}}{\rho_{im}\rho_{jm}}$$

We integrate over energy and use that we know the limit $\lim_{m \mid i} \psi_m = \rho_{im}$, so we can rewrite

$$\psi_m^{2\epsilon} \frac{\rho_{ij}}{\rho_{im}\rho_{jm}} = \left(\frac{\psi_m\rho_{ij}}{\rho_{im}\rho_{jm}}\right)^{2\epsilon} \frac{\rho_{ij}^{1-2\epsilon}}{\rho_{im}^{1-2\epsilon}\rho_{jm}^{1-2\epsilon}} = \left(1 + 2\epsilon g_{ij,m}^{(2)}\right) \frac{\rho_{ij}^{1-2\epsilon}}{\rho_{im}^{1-2\epsilon}\rho_{jm}^{1-2\epsilon}}$$

Soft function at NLO

Knowing that ($\eta_{ij}=
ho_{ij}/$ 2)

Introduction

$$\left\langle \frac{\rho_{ij}^{1-2\epsilon}}{\rho_{im}^{1-2\epsilon}\rho_{jm}^{1-2\epsilon}} \right\rangle_{m} = \frac{2\eta_{ij}^{\epsilon}}{\epsilon} K_{ij}^{(2)} = \frac{2\eta_{ij}^{\epsilon}}{\epsilon} \frac{\Gamma(1+\epsilon)^{2}}{\Gamma(1+2\epsilon)} \, _{2}F_{1}\left(\epsilon,\epsilon,1-\epsilon,1-\eta_{ij}\right),$$

in Laplace space we arrive to the following bare soft function

$$S_{1} = a_{s} (\mu \bar{u})^{2\epsilon} \frac{\Gamma(1-2\epsilon)}{\Gamma(1-\epsilon)e^{\epsilon\gamma_{E}}} \sum_{(ij)} \mathbf{T}_{i} \cdot \mathbf{T}_{j} \left[\frac{\eta_{ij}^{\epsilon}}{\epsilon^{2}} \mathcal{K}_{ij}^{(2)} + \left\langle g_{ij,m}^{(2)} \frac{\rho_{ij}^{1-2\epsilon}}{\rho_{im}^{1-2\epsilon} \rho_{jm}^{1-2\epsilon}} \right\rangle_{m} \right].$$

By combining S_1 with the renormalization matrices Z_1 and Z_1^{\dagger} , we finally obtain $(L_{ij} = \ln (\mu \bar{u} \sqrt{\eta_{ij}}))$

$$\tilde{S}_{1} = a_{s} \sum_{(ij)} \mathbf{T}_{i} \cdot \mathbf{T}_{j} \left[2L_{ij}^{2} + \text{Li}_{2}(1 - \eta_{ij}) + \frac{\pi^{2}}{12} + \left\langle \ln \left(\frac{\psi_{m}\rho_{ij}}{\rho_{im}\rho_{jm}} \right) \frac{\rho_{ij}}{\rho_{im}\rho_{jm}} \right\rangle_{m} + \mathcal{O}(\epsilon) \right]$$
Soft function at NLO Soft function at NNLO Results Conclusions

Soft function at NNLO

The NNLO contribution to the bare soft function is

$$S_2 = S_{2,RR} + S_{2,RV} - a_s \, rac{eta_0}{\epsilon} S_1$$

We further split the double-real contribution into correlated and uncorrelated pieces

$$S_{2,RR,\tau} = S_{2,RR,T^4} + S_{2,RR,T^2} = \frac{1}{2} \sum_{(ij),(k,l)} \{\mathbf{T}_i \cdot \mathbf{T}_j, \mathbf{T}_k \cdot \mathbf{T}_l\} I_{T^4,ij,kl} - \frac{C_A}{2} \sum_{(ij)} \mathbf{T}_i \cdot \mathbf{T}_j I_{T^2,ij}$$

The real-virtual contribution reads

$$S_{2,RV,\tau} = S_{RV,T^2} + S_{RV,tc} = \frac{[\alpha_s] \, 2^{-\epsilon}}{\epsilon^2} C_A A_K(\epsilon) \sum_{(ij)} \mathbf{T}_i \cdot \mathbf{T}_j \ I_{RV,ij} + [\alpha_s] \frac{4\pi N_\epsilon}{\epsilon} \sum_{(kij)} \kappa_{ij} F^{kij} I_{kij}$$

where $\kappa_{ij} = \lambda_{ij} - \lambda_{im} - \lambda_{jm}$, with $\lambda_{ij} = 1$ if both *i* and *j* refer to incoming/outgoing partons and zero otherwise. We have defined $F^{kij} = f_{abc} T^a_k T^b_i T^c_j$, while $A_K(\epsilon)$ and N_{ϵ} are normalization factors.

Initiadación Soft initiana (NEO Hesits Obligación 00000 00 000000000 000 0 0	Introduction 00000	Soft function at NLO	Soft function at NNLO	Results 000	Conclusions o
--	-----------------------	----------------------	-----------------------	----------------	------------------

Soft function at NNLO

The calculation of the renormalized soft function is organized as follows

$$ilde{S}_2 = ilde{S}_2^{ ext{uncorr}} + ilde{S}_2^{ ext{corr}} + ilde{S}_2^{ ext{tc}}$$

Where the pieces are given by the following contributions

Uncorrelated emissionCorrelated emission $\tilde{S}_2^{\text{uncorr}} = \frac{1}{2}\tilde{S}_1\tilde{S}_1$ $\tilde{S}_2^{\text{corr}} = S_{2,RR,T^2} + S_{RV,T^2} - Z_{2,r} - Z_{2,r}^{\dagger} - \frac{a_s\beta_0}{\epsilon}S_1,$

Triple color terms

$$\tilde{S}_{2}^{\text{tc}} = \frac{1}{2} \left[Z_{1}, Z_{1}^{\dagger} \right] + \frac{1}{2} \left[S_{1}, Z_{1} - Z_{1}^{\dagger} \right] + S_{\text{RV,tc}}$$

Introduction	Soft function at NLO	Soft function at NNLO ○●○○○○○○○○	Results	$\mathop{\rm Conclusions}_{\scriptscriptstyle O}$
--------------	----------------------	-------------------------------------	---------	---

Uncorrelated emission

The S_2 contains an iterated contribution of the NLO soft function S_1

$$I_{T^{4},ij,kl} = \frac{[\alpha_{s}]^{2}}{2} \left\langle \int_{0}^{\infty} \frac{dE_{m}}{E_{m}^{1+2\epsilon}} \frac{dE_{n}}{E_{n}^{1+2\epsilon}} \,\delta(\tau - E_{m}\psi_{m} - E_{n}\psi_{n}) \frac{\rho_{ij}}{\rho_{im}\rho_{jm}} \frac{\rho_{kl}}{\rho_{kn}\rho_{ln}} \right\rangle_{mn}$$

If we integrate over both energies

$$\int_{0}^{\infty} \frac{dE_m}{E_m^{1+2\epsilon}} \frac{dE_n}{E_n^{1+2\epsilon}} \,\delta(\tau - E_m \psi_m - E_n \psi_n) = \frac{\tau^{-1-4\epsilon}}{\Gamma(-4\epsilon)} \frac{\psi_m^{2\epsilon} \Gamma(1-2\epsilon)}{2\epsilon} \frac{\psi_n^{2\epsilon} \Gamma(1-2\epsilon)}{2\epsilon}$$

The Laplace transform allows us to identify this iteration

$$S_{2,RR,T^{4}} = \frac{[\alpha_{s}]^{2}}{4} \sum_{(ij),(kl)} \{\mathbf{T}_{i} \cdot \mathbf{T}_{j}, \mathbf{T}_{k} \cdot \mathbf{T}_{l}\} \left(\frac{u^{2\epsilon} \Gamma(1-2\epsilon)}{2\epsilon}\right)^{2} \left\langle \psi_{m}^{2\epsilon} \frac{\rho_{ij}}{\rho_{im}\rho_{jm}} \right\rangle_{m} \left\langle \psi_{n}^{2\epsilon} \frac{\rho_{kl}}{\rho_{kn}\rho_{ln}} \right\rangle_{n} = \frac{1}{2} S_{1}S_{1}$$
Introduction
Soft function at NLO
Soft functio

Triple color terms

This contribution depends on triple products of color charges

$$\tilde{S}_{2}^{\text{tc}} = \frac{1}{2} \left[Z_{1}, Z_{1}^{\dagger} \right] + \frac{1}{2} \left[S_{1}, Z_{1} - Z_{1}^{\dagger} \right] + S_{\text{RV,tc}}$$

The commutators can be computed as shown in (Devoto et al. - hep-ph/2310.17598).

$$\frac{1}{2}[Z_1, Z_1^{\dagger}] = -\frac{2\pi a_s^2}{\epsilon^2} \sum_{(kij)} \lambda_{kj} L_{ij} F^{kij} = -\frac{\pi a_s^2}{\epsilon^2} \sum_{(kij)} \lambda_{kj} \ln \eta_{ij} F^{kij}$$
$$\frac{1}{2}[S_1, Z_1 - Z_1^{\dagger}] = -\frac{a_s^2 \pi (\mu u)^{2\epsilon}}{\epsilon^2} \frac{e^{\gamma_E \epsilon} \Gamma (1 - 2\epsilon)}{\Gamma (1 - \epsilon)} \sum_{(kij)} \kappa_{kj} \left\langle \psi_m^{2\epsilon} \frac{\rho_{ki}}{\rho_{km} \rho_{im}} \right\rangle_m F^{kij}$$

The real-virtual triple-color correlated contribution is

$$S_{\rm RV,tc} = \frac{a_s^2 \pi(\mu \ \bar{u})^{4\epsilon} N_\epsilon 2^{-\epsilon}}{2\epsilon^2} \frac{\Gamma(1-4\epsilon)}{\Gamma^2(1-\epsilon) e^{2\gamma_E \epsilon}} \sum_{(kij)} \kappa_{kj} \left\langle \psi_m^{4\epsilon} \frac{\rho_{ki}}{\rho_{km} \rho_{im}} \left(\frac{\rho_{kj}}{\rho_{km} \rho_{jm}} \right)^{\epsilon} \right\rangle_m F^{kij}$$

Introduction 00000	Soft function at NLO	Soft function at NNLO	Results 000	Conclusions o
-----------------------	----------------------	-----------------------	----------------	------------------

Triple color terms

Following the NLO case,

Introduction

$$\left\langle \psi_m^{2\epsilon} \frac{\rho_{ki}}{\rho_{km}\rho_{im}} \right\rangle_m = \left\langle (1 + 2\epsilon g_{ki,m}^{(2)}) \frac{\rho_{ki}^{1-2\epsilon}}{\rho_{km}^{1-2\epsilon}\rho_{im}^{1-2\epsilon}} \right\rangle_m, \\ \left\langle \psi_m^{4\epsilon} \frac{\rho_{ki}}{\rho_{km}\rho_{im}} \left(\frac{\rho_{kj}}{\rho_{km}\rho_{jm}} \right)^\epsilon \right\rangle_m = \left\langle \left(1 + 4\epsilon g_{ki,m}^{(4)} \right) \frac{\rho_{ki}^{1-4\epsilon}}{\rho_{km}^{1-4\epsilon}} \left(\frac{\rho_{kj}}{\rho_{km}\rho_{jm}} \right)^\epsilon \right\rangle_m.$$

It is easy to show that the *N*-jettiness dependent poles cancel

$$ilde{S}_{2}^{\text{tc}}
ightarrow - rac{2a_{s}^{2}\pi}{\epsilon} \sum_{(kij)} \kappa_{kj} \left\langle rac{
ho_{ik}}{
ho_{im}
ho_{km}} \left(g_{ki,m}^{(2)} - g_{ki,m}^{(4)}
ight)
ight
angle_{m} \mathcal{F}^{kij} = \mathcal{O}(\epsilon^{0})$$

While the N-jettiness dependent finite reminder is

$$\tilde{S}_{2}^{\text{tc}} \to 2a_{s}^{2}\pi \sum_{(kij)} \kappa_{kj} \left\langle \frac{\rho_{ki}}{\rho_{im}\rho_{km}} \ln\left(\frac{\psi_{m}\rho_{ki}}{\rho_{km}\rho_{im}}\right) \ln\left(\frac{(\bar{u}\mu)^{2}\psi_{m}\rho_{im}\rho_{kj}}{2\rho_{jm}\rho_{ki}}\right) \right\rangle_{m} F^{kij}$$
Soft function at NLO
Soft function at NNLO
Soft function at NNL

Conclusions o

Triple color terms

What about the rest of the finite part?

The idea is to use the integral of

$$\left\langle \frac{\rho_{ki}}{\rho_{km}\rho_{im}} \left(\frac{\rho_{kj}}{\rho_{km}\rho_{jm}} \right)^{\epsilon} \right\rangle_{m},$$

which was already calculated in Devoto et al. - hep-ph/2310.17598, and take the difference of the two results

Introduction 00000	Soft function at NLO	Soft function at NNLO	Results	Conclusions o

Correlated emission

The calculation of the correlated terms are the main bulk of the calculation

$$ilde{S}_2^{\mathsf{corr}} = S_{2,\textit{RR},\textit{T}^2} + S_{\textit{RV},\textit{T}^2} - Z_{2,\textit{r}} - Z_{2,\textit{r}}^\dagger - rac{a_{\scriptscriptstyle S}eta_0}{\epsilon}S_1,$$

The last three renormalization term do not require any integration, and the real-virtual one is simply

$$S_{RV,T^2} \propto -\frac{[lpha_s]^2}{\epsilon^3} C_A \sum_{(ij)} \mathbf{T}_i \cdot \mathbf{T}_j \left\langle \psi_m^{4\epsilon} \left(\frac{
ho_{ij}}{
ho_{im}
ho_{jm}}
ight)^{1+\epsilon}
ight
angle_m$$

The first term, that involves the correlated emission eikonal term $S_{ii}^{gg}(m, n)$, is the one that requires atention

$$S_{2,RR,T^2,\tau} = -\frac{C_A}{2} \sum_{(ij)} \mathbf{T}_i \cdot \mathbf{T}_j \ I_{ij,\tau} = -\frac{C_A}{2} \sum_{(ij)} \mathbf{T}_i \cdot \mathbf{T}_j \ \frac{g_s^4}{2} \int [dp_m] [dp_n] \ \delta \left(\tau - E_m \psi_m - E_n \psi_n\right) \tilde{S}_{ij}^{gg}(m,n)$$

(there is also an analogous and simpler quark contribution, but we focus on the gluon case)

Introduction Soft fu	iunction at NLO	Soft function at NNLO	Results	Conclusions o
----------------------	-----------------	-----------------------	---------	------------------

Correlated emission

We perform a nested subtraction of all divergent limits in the correlated term as follows

Introduction Soft function at NLO Soft function at NNLO Results Conclusio	Introduction	Soft function at NLO	Soft function at NNLO ○○○○○○●○○○	Results	Conclusions o
---	--------------	----------------------	-------------------------------------	---------	------------------

Correlated emission

We perform a nested subtraction of all divergent limits. The first one is the strongly ordered one, the double soft limit with energy ordering

$$\mathcal{S}_{2,\mathcal{RR},\mathcal{T}^2} = -rac{\mathcal{C}_{\mathcal{A}}}{2}\sum_{(ij)} \mathbf{T}_i \cdot \mathbf{T}_j \left[ar{\mathcal{S}}_\omega \mathit{I}_{ij} + \mathcal{S}_\omega \mathit{I}_{ij}
ight],$$

with S_{ω} being the operator that enforces the strongly-ordered limit

- Divergent terms of S_ω I_{ij} can be calculated analytically. The N-jettiness dependent ones cancel against those of the RV term
- There are only collinear divergences remaining in $ar{S}_{\omega} \mathit{I}_{ij} = (1 S_{\omega}) \mathit{I}_{ij}$

Introduction	Soft function at NLO	Soft function at NNLO ○○○○○○○●○○	Results	Conclusions o

Correlated emission

Now, we introduce partition functions (see hep-ph/2310.17598) to separate double-collinear and triple-collinear singularities

$$\bar{S}_{\omega}[I_{ij}] = \bar{S}_{\omega}[I_{ij}^{dc}] + \bar{S}_{\omega}[I_{ij}^{tc}]$$

The double-collinear contribution

$$\bar{S}_{\omega}[I_{ij}^{dc}] = \frac{N_{u}}{\epsilon} \int_{0}^{1} \frac{d\omega}{\omega^{1+2\epsilon}} \left\langle \psi_{mn}^{4\epsilon} \left(w^{mi,nj} + w^{ni,mj} \right) \bar{S}_{\omega} \left[\omega^{2} \tilde{S}_{ij}^{gg} \right] \right\rangle_{mn}$$

has poles independent of the *N*-jettiness, which can be obtained from the calculation done in hep-ph/1807.05835. The jettiness dependent part can be calculated numerically.

10 4 0004	han Dadwar Niettingen auft function			
tion	Soft function at NLO	Soft function at NNLO	Results	Conclusions

Correlated emission

• For the triple-collinear contribution (with $w^{tc} = w^{mi,ni} + w^{mj,nj}$)

$$\bar{S}_{\omega}[I_{ij}^{tc}] = \frac{N_{u}}{\epsilon} \int_{0}^{1} \frac{d\omega}{\omega^{1+2\epsilon}} \left\langle \psi_{mn}^{4\epsilon} \ \mathbf{w}^{tc} \ \bar{S}_{\omega} \left[\omega^{2} \tilde{S}_{ij}^{gg} \right] \right\rangle_{mn}$$

(sectoring)

we will also introduce sectors to handle the m||n| singularity

- Again, the strategy is to identify the terms that correspond to the calculation without the N-jettiness constraint
- This allows us to avoid calculating complicated finite terms, leaving only the jettiness dependent ones for numeric evaluation

The final result

The NLO contribution reads

$$\begin{split} \tilde{S}_{1} &= a_{s} \sum_{(ij)} \mathbf{T}_{i} \cdot \mathbf{T}_{j} \left[2L_{ij}^{2} + \mathrm{Li}_{2}(1 - \eta_{ij}) + \frac{\pi^{2}}{12} + \left\langle L_{ij,m}^{\psi} \frac{\rho_{ij}}{\rho_{im}\rho_{jm}} \right\rangle_{m} \right], \\ \text{where } L_{ij} &= \ln(\bar{u}\sqrt{\eta_{ij}}\mu) \text{ and } L_{ij,m}^{\psi} = \ln\left(\frac{\psi_{m}\rho_{ij}}{\rho_{im}\rho_{jm}}\right). \end{split}$$

The NNLO one is

$$\tilde{S}_2 = \frac{1}{2} \tilde{S}_1^2 + a_s^2 C_A \sum_{(ij)} \mathbf{T}_i \cdot \mathbf{T}_j \ G_{ij} + a_s^2 \ n_f \ T_R \sum_{(ij)} \mathbf{T}_i \cdot \mathbf{T}_j \ Q_{ij} + a_s^2 \pi \sum_{(kij)} F^{kij} \ \kappa_{kj} G_{kij}^{\text{triple}},$$

where G_{ij} , Q_{ij} and G_{kij}^{triple} are finite function with analytical terms along with a *low number numerical integrations* over one- and two-particle phase space in four-dimensions

Introduction	Soft function at NLO	Soft function at NNLO	Results ●○○	Conclusions o

Numerical checks

• We compared results for the *N*-Jettiness soft function obtained in this paper with those of the Ref:

The NNLO soft function for N-jettiness in hadronic collisions

Bell, Dehnadi, Mohrmann, Rahn, arXiv hep-ph/2312.11626.

Here, we focus in the (new) 3-jettiness case. We consider the configuration with two back-to-back beams. The five directions are

$$n_1 = (0, 0, 1), \quad n_2 = (0, 0, -1), \quad n_3 = (\sin \theta_{13}, 0, \cos \theta_{13}),$$

$$n_4 = (\sin \theta_{14} \cos \phi_4, \sin \theta_{14} \sin \phi_4, \cos \theta_{14}), \quad n_5 = (\sin \theta_{15} \cos \phi_5, \sin \theta_{15} \sin \phi_5, \cos \theta_{15}),$$

in the following phase space point

$$\theta_{13} = \frac{3\pi}{10}, \quad \theta_{14} = \frac{6\pi}{10}, \quad \theta_{15} = \frac{9\pi}{10}, \quad \phi_4 = \frac{3\pi}{5}, \quad \phi_5 = \frac{6\pi}{5}$$

Introduction	Soft function at NLO	Soft function at NNLO	Results ○●○	Conclusions o
--------------	----------------------	-----------------------	----------------	------------------

Numerical checks

Dipole configurations

Dipoles	Gluons		Quarks		
	G_{ij}^{nl}	Bell et al.	Q_{ij}^{nl}	Bell et al.	
12	116.20 ± 0.01	116.20 ± 0.16	-36.249 ± 0.001	-36.244 ± 0.009	
13	38.13 ± 0.03	37.63 ± 0.03	-21.717 ± 0.007	-21.732 ± 0.005	
14	63.63 ± 0.01	63.66 ± 0.06	-25.189 ± 0.003	$\textbf{-25.192} \pm 0.006$	
15	107.17 ± 0.01	106.99 ± 0.12	-35.268 ± 0.001	$\textbf{-35.256} \pm 0.009$	
23	97.11 ± 0.01	96.97 ± 0.10	-32.875 ± 0.002	-32.872 ± 0.008	
24	67.36 ± 0.02	67.51 ± 0.08	-26.821 ± 0.003	-26.815 ± 0.007	
25	30.87 ± 0.03	30.73 ± 0.04	-21.561 ± 0.009	-21.561 ± 0.005	
34	69.43 ± 0.01	69.24 ± 0.07	-25.854 ± 0.002	-25.861 ± 0.006	
35	106.13 ± 0.02	105.97 ± 0.13	-34.799 ± 0.002	-34.796 ± 0.008	
45	74.45 ± 0.02	74.36 ± 0.09	-28.247 ± 0.004	$\textbf{-28.251} \pm 0.007$	

Tripole sums

	$\widetilde{c}_{tripoles}$	Bell et al.	
$\tilde{C}_{tripoles}^{(2,124)}$	$\textbf{-683.25} \pm 0.01$	$\textbf{-683.23}\pm0.04$	
$\tilde{c}_{tripoles}^{(2,125)}$	-2203.3 ± 0.2	$\textbf{-2203.5}\pm0.1$	
$\tilde{c}_{tripoles}^{(2,145)}$	$\textbf{-6.324} \pm \textbf{0.004}$	$\textbf{-6.325} \pm \textbf{0.04}$	
$\tilde{c}_{tripoles}^{(2,245)}$	$\textbf{-0.837} \pm \textbf{0.008}$	$\textbf{-0.830} \pm \textbf{0.039}$	

The tripole sums correspond to the four independent color structures as specified by Bell et al.

Conclusions

In our work

- We calculated the *N*-jettiness soft function for generic *N* and demonstrated the **analytical** cancellation of poles against renormalization matrix
- We derived a simple representation for the finite, jettiness-dependent remainder, allowing for faster implementations
- We found excellent agreement between our numerical results for N = 1, 2 and N = 3 and previous calculations
- We have shown the significant benefits of applying subtraction-inspired methods to derive representations for building blocks of slicing methods

Introduction	Soft function at NLO	Soft function at NNLO	Results	Conclusions ●

Correlated emission

Introducing sectors, we arrive to

$$\begin{split} \bar{S}_{\omega}[I_{ij}^{tc}] &= \frac{N_{u}}{\epsilon} \int_{0}^{1} \frac{d\omega}{\omega^{1+2\epsilon}} \left\langle C_{mn} \left[d\Omega_{mn} \right] \theta^{b+d} w^{tc} \psi_{mn}^{4\epsilon} \bar{S}_{\omega} \left[\tilde{S}_{ij}^{gg} \right] \right\rangle_{mn} \\ &+ \frac{N_{u}}{\epsilon} \sum_{x \in \{i,j\}} \int_{0}^{1} \frac{d\omega}{\omega^{1+2\epsilon}} \left\langle (1 - \theta^{b+d} C_{mn}) \left[d\Omega_{mn} \right] C_{xmn} w^{tc} \psi_{mn}^{4\epsilon} \bar{S}_{\omega} \left[\tilde{S}_{ij}^{gg} \right] \right\rangle_{mn} \\ &+ \frac{N_{u}}{\epsilon} \sum_{x \in \{i,j\}} \int_{0}^{1} \frac{d\omega}{\omega^{1+2\epsilon}} \left\langle (1 - \theta^{b+d} C_{mn}) \left[d\Omega_{mn} \right] \bar{C}_{xmn} w^{mx,nx} \psi_{mn}^{4\epsilon} \bar{S}_{\omega} \left[\tilde{S}_{ij}^{gg} \right] \right\rangle_{mn}, \end{split}$$

where $\bar{C}_{xmn} = I - C_{xmn}$ and $[d\Omega_{mn}] = [d\Omega_m][d\Omega_n]$. The idea is to calculate the first two terms explicitly, and expand the last integrand in ϵ .

Back-up

26/24 18.4.2024 Ivan Pedron: N-jettiness soft function at NNLO in QCD