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Scattering amplitudes in perturbation theory

Hard scattering amplitudes for Monte Carlo simulations are
computed in perturbation theory from matrix elements

M:M0+M1+M2+...

with My = M —i—:r:E—i—...,

Partonic cross sections computed from colour- and helicity-summed scattering probability density

[Hoche]

W= s RM/ == M2 +2Re[M;RM1]+|RM1|2+2Re MO*RMQ] b
,CO ,col | ——
—— LO NLO virtual NNLO virtual-virtual

colour and helicity sum with
average and symmetry factor

with UV divergences subtracted by the renormalisation procedure R M = My+R M{+R Mo+. ..



Scattering amplitudes in perturbation theory

Finite partonic cross sections require factorisation of initial-state collinear singularities into PDFs,

and addition of real-emission contributions to cancel final-state collinear and soft divergences

6 = [ddy W +§ [dDy x wX)

N———
N-particle phase space contribution with X extra
integration, flux factor unresolved particles

with the real-emission scattering probability densities up to NNLO

W = s P ore () R oW = s PP
h,col| ~——— h,col —
NLO real NNLO real-virtual NNLO real-real

where Mé”:% + ..., Mgl)m + ..., MSQ):E + ...

Challenges in automation of numerical NNLO calculations:
> Real-virtual contributions require excellent numerical stability in soft and collinear regions
> Automated calculations of virtual-virtual part 2 Re] M} RM3]



Outline

|. OPENLOOPS (tree-level and one-loop public version)

[I. Automated numerical calculation of scattering amplitudes

— Strategy at one and two loops

[Il. Status of two-loop amplitudes in OPENLOOPS
(i) Tensor coefficients
(i) Tensor integrals

(iii) Rational terms

V. Summary and Outlook




. OpenlLoops

OPENLOOPS [Buccioni, Lang, Lindert, Maierhsfer, Pozzorini, Zhang, M.Z] is a fully automated numerical tool
for the computation of scattering probability densities from tree and one-loop amplitudes

Wi = X |M>, Wi= % QRGIM?SRMJ, Wi = ¥ [RMy[?
h.,col h,col h,col

Download from https://gitlab.com/openloops/OpenLoops.git

e Full NLO QCD and NLO EW corrections available
e Efficient calculation of colour and helicity sums in squared amplitudes

e Excellent CPU performance and numerical stability due to
— On-the-fly tensor integral reduction

— Expansions to any order in critical kinematic variables

— Hybrid-precision mode (targeted use of quadruple precision, bulk in a double precision)

— Real-emission contributions up to NNLO used e.g. in
— MATRIX [Grazzini, Kallweit, Wiesemann]

— NNLOJET [Gauld, Glover, Huss, Majer, Gehrmann-De Ridder]
— MCMULE [Banerjee, Engel, Signer, Ulrich] + NNLO QED


https://gitlab.com/openloops/OpenLoops.git

New feature: QED with OPENLOOPS

in collaboration with J. Lindert
e Separation of electromagnetic and weak contributions for given order in «
e Implementation of three massive lepton generations
e Calculations with variable number of lepton and/or quark generations

Governed by three OPENLOOPS parameters (dedicated process libraries required)

ged | active a-corrections = 0 (full EW), 1 (pure QED), 3 (pure weak)
nf | number of active quarks =0,4,5,6
nfl | number of active lepton generations | = 0,1,2,3

= QED calculations with different lepton masses available

Recent NNLO applications with MCMULE [Banerjee, Engel, Signer, Ulrich]
e Bhabba and Mgller scattering (one lepton mass) [Banerjee, Engel, Schalch, Signer, Ulrich, 2021; 2022]

e Muon-electron scattering at NNLO (two different lepton masses) [Broggio, Engel, Ferroglia, Mandal,
Mastrolia, Rocco, Ronca, Signer, Torres Bobadilla, Ulrich, M.Z., 2023]
— Complete and fully differential NNLO calculation of a 2 — 2 process with
two different non-zero masses on the external lines



Il. Automated numerical calculation of scattering amplitudes

Feynman integrals in D = 4 — 2¢ dimensions to regularise divergences, e.g. one-loop diagram I:

_ N—-1 _
D(q1) = A Dy(q1),

Di(q1) = (@1 + pp)* — m3,

. ) dD,
/dCh - :LLQ / (273)1D

_ - N(a
Mir = Cir /dQ1D(<311)>

colour factor

e Numerical tools, such as OPENLOOPS [Buccioni et al], RECOLA [Actis et al], MADLOOP [Hirschi et all,
HELAC [Bevilacqua et al] construct the numerator in 4 dimensions = Split numerator

N(q) = Nlq) + N(q) with N(q1) = N(q1)

qi — i
_di —_— A = A roject D-dim — 4-dim
D=dim =) §im  (D—4)—dim T TV (Pl )

¢ Requirement for automation: Construct amplitude from process-independent elements

Exploit factorisation into universal building blocks: AN (q1) = Si(q1)...Sn(q1)

with loop segments S;(q1) = Vo= {Yg +Zi, qu} 0]
Bi—1 Bi —
Di loop vertex and propagator external subtree




Automation strategy at one loop in OPENLOOPS

_ gHl ... gHtN o N
Mir = Ny, d"q + [dq
0= Ny S50 D@ Y D@ Dy
4-dim coefficient :
tensor integral (D — 4)-dim numerator

Recursive construction of tensor coefficients from the segments @
of the cut-opened loop [van Hameren; !/ﬁ k \!I

Nn(Q> = Nn—l(Q)’Sn<Q> ="

Cascioli, Maierhofer, Pozzorini; Buccioni, Lang, Bo ;
Lindert, Maierhofer, Pozzorini, Zhang, M.Z] )_\)—/@

Tensor integrals: On-the-fly reduction [Buccioni, Pozzorini, M.Z] and external tools:
COLLIER [Denner, Dittmaier, Hofer], ONELOOP [van Hameren]

Restoration of (D — 4)-dim numerator parts together with renormalization procedure R
through universal rational counterterms [Ossola, Papadopoulos, Pittau]

R <§ W‘X< 521 T + 6R1,F
D-dim = 4-dim

subtract divergence  restore AN -term




Two-loop diagrams

Vo

‘ql/
Ci Cs

(Red2) (Redl) (Irreducible)

Up)
PN

Co

<«

00

Diagrams consist of loop chains C;, each depending on a single loop momentum g;.

Types of diagrams:
e Reducible diagrams: Two factorised loop integrals

— Red2: Two loop chains Cy, Co connected by a tree-like bridge P.
— Red1: Two loop chains Cy, Cy connected by a single quartic vertex V;
Extension of one-loop OPENLOOPS — Fully implemented

e Irreducible diagrams: Three loop chains Cy, Co, C3 with loop momenta
q1, 92,93 = —(q1 + ¢2) and two connecting vertices V), V;



Irreducible two-loop diagrams

Irreducible two-loop diagram I' (1P| on amputation of all external subtrees):

, N(q1, )

il D)(g;) 3~ —(a1+42)

e Numerical calculation in integer dimensions = Split numerator

N(q, @)= Mg, @) + N(@, ) with Mg, ) =N(a@1, @)
D—dim

g — ¢,
) o= A,
4—dim (D—4)—dim G s g

e Exploit factorisation into universal building blocks

> Numerator N (g1, q2) = iﬁlN(i)(%)jﬁo Vilar, @) with NO(g) = 55(q;) - 5.5@—1(%‘)

> Denominators D@(qz-) = D(()i)(qz-) F D%z_l(qi) where Dc(li)(qz-) = (g +pm)2 —m2,

(External momenta p;, and masses m,, along i-th chain)



I1l. Automation strategy at two loops

M1 Hr V1 Vs
Zil? D; (i) 2137 Dj" (i) B3=—(q1+¢2)

Numerical construction of 4-dim tensor coefficients
Completely general recursive algorithm [Pozzorini, Schar, M.Z.] with steps

\Nn(cn, @) = Np—1(q1, @) - Ky, where ICp, € {57(%@(%), Vo.1(q1,42)}

Reduction of tensor integrals ——  scalar integrals Z, ——  master integrals ZZM
— Evaluation of master integrals with external tools

Bottle neck of NNLO automation — Main focus of our current projects

Restoration of (D — 4)-dim numerator parts from universal two-loop rational terms
[Lang, Pozzorini, Zhang, M.Z.] stemming from the interplay of N with UV and IR divergences.

— together with renormalisation procedure via counterterm insertions in lower-loop diagrams

10


https://arxiv.org/abs/2201.11615

Two-loop tensor coefficients (irreducible diagrams)

e Sort chains by length: N1 > Ny > Nj Example: n=1

Vo

Choose order of V), V1 by vertex type AQ1/ T %
@) | @)

e Dress N'(3) (shortest chain) i

¢ @
¢ L e

Vi

NB)(gs) = /\/'ég_)l(q?)) . SB)(g3)  with initial condition N£31) =1

Partial chains NT(L& computed only once for multiple diagrams

11




Two-loop tensor coefficients (irreducible diagrams)

e Sort chains by length: N7 > Ny > Nj Example: y n=>0
Choose order of Vy, V| by vertex type fll/ _IO_ %
q
o Dress A'(3) (shortest chain) @ i ’ @
o Dress 1) /\/l?j/\/(l) (longest chain) |
Vi

U 1) = S UGBS hi) with Ul =2 £ M) Car)

Initial building block: Born-colour interference depending on helicity / of all external particles

12




Two-loop tensor coefficients (irreducible diagrams)

e Sort chains by length: N1 > Ny > Nj Example: y n=1
Choose order of V), V| by vertex type fll/ _IO_ %
q
e Dress N'(3) (shortest chain) @ i ’ @
o Dress 1) /\/l?j/\/(l) (longest chain) |
Vi

U 1) = S UGBS hi) with Ul =2 £ M) Car)

(1)

On-the-fly summation of segment helicities hy,

(1)

— Constructed object depends on helicities of remaining (undressed) segments of the diagram I

12




Two-loop tensor coefficients (irreducible diagrams)

e Sort chains by length: N1 > Ny > Nj Example: y n =2
Choose order of V), V| by vertex type ‘q/ —IO— %
q
e Dress N'(3) (shortest chain) i ’ @
o Dress UV o /\/16/\/(1) (longest chain)
Vi

U i) = < U i) 830G i) with Ul () =2 £ M) Car)

(1)

On-the-fly summation of segment helicities Ay,

(1)

— Constructed object depends on helicities of remaining (undressed) segments of the diagram I

12




Two-loop tensor coefficients (irreducible diagrams)

e Sort chains by length: N1 > Ny > Nj Example: n=23

o Dress UV o /\/16/\/(1) (longest chain)

Choose order of V), V1 by vertex type “Jl/ _VIO_ %
" @)
1

e Dress N'(3) (shortest chain)
Vi

U i) = < U i) 830G i) with Ul () =2 £ M) Car)

(1)

On-the-fly summation of segment helicities Ay,

(1)

— Constructed object depends on helicities of remaining (undressed) segments of the diagram I

= Most helicity d.o.f already summed at stage with low tensor rank complexity

12




Two-loop tensor coefficients (irreducible diagrams)

e Sort chains by length: N1 > Ny > N3 Example:
Choose order of V), V1 by vertex type

e Dress N'(3) (shortest chain)
o Dress UV o /\/16/\/(1) (longest chain)
e Connect V1 with U and NG)

Vi

U aqrsasn?) = 5 UWq R ) N (gs, ) Vilar,

h(3)

Highest complexity step due to dependence on 3 open indices and 2 loop momenta
— performed at lowest rank in ¢o and for only a few unsummed helicity configurations

13




Two-loop tensor coefficients (irreducible diagrams)

e Sort chains by length: N1 > Ny > Nj Example:
Choose order of V), V| by vertex type

o Dress A'(®) (shortest chain)
o Dress UV o MENW (longest chain)
e Connect V; with 2/} and N3

Vo

v - A @

e Connect V and map g3 — —(q1 + @)

Vi

U (1, 40,0y = ™ (g1, g3, 1) Vola, @2)

@3——(q1+q2)

14




Two-loop tensor coefficients (irreducible diagrams)

e Sort chains by length: N1 > Ny > N3 Example:

Choose order of V), V1 by vertex type
e Dress N'(3) (shortest chain)
e Dress Y1) oc MEN) (longest chain)
e Connect V1 with U and NG)
e Connect V) and map ¢3 — —(q1 + ¢2)

e Connect segments of N/ (2

Vi

- 123
U (g1, qo, W)Y = %)UT(L—1)
I,

(q1, 92, R

(2)

n—1

) S (g, B?))

(2)

On-the-fly summation of segment helicities hy

— Constructed object depends on helicities of remaining (undressed) segments of the diagram h

15
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Two-loop tensor coefficients (irreducible diagrams)

e Sort chains by length: N1 > Ny > Nj Example:

Choose order of V), V| by vertex type
o Dress A'(®) (shortest chain)
e Dress Y1) oc MEN) (longest chain)
e Connect V; with 1) and A3
e Connect V and map g3 — —(q1 + @)

e Connect segments of N/ (2

Vi

~ 123
U (g1, o, 2)) = (22)242_9
hn

~

(q1, 92, R

(2)

n—1

) S (g, B?))

(2)

On-the-fly summation of segment helicities hy

— Constructed object depends on helicities of remaining (undressed) segments of the diagram h

15

(2)

n




Two-loop tensor coefficients (irreducible diagrams)

e Sort chains by length: N1 > Ny > Nj Example:

Choose order of V), V| by vertex type
o Dress A'(®) (shortest chain)
e Dress Y1) oc MEN) (longest chain)
e Connect V; with 1) and A3
e Connect V and map g3 — —(q1 + @)

e Connect segments of N/ (2

Vi

UL (g1, go, hD)) = (zg)uyilfi%ql, a2, 1) 52 (o, ()
hn

(2)

On-the-fly summation of segment helicities hy

(2)

— Constructed object depends on helicities of remaining (undressed) segments of the diagram hay

= Lowest complexity in helicities for steps with highest rank in loop momenta

15




Two-loop tensor coefficients (irreducible diagrams)

e Sort chains by length: N1 > Ny > Nj Example:
Choose order of V), V| by vertex type

o Dress A'(®) (shortest chain)

e Dress Y1) oc MEN) (longest chain)
e Connect V; with 2/} and N3

o Connect V) and map g3 — —(q1 + ¢2)

e Connect segments of N/(2)

Highly efficient and completely general algorithm for two-loop tensor coefficients

Fully implemented for QED and QCD corrections to the SM

16




Two-loop rational terms

Renormalised D-dim amplitudes from amplitudes with 4-dim numerator [Pozzorini, Zhang, M.Z ]

R —
D-dim 4-dim
T (02154021, + Ry, )+ [ 9z o+ Ry |
4-dim subtract restore N -term subtract remaining restore remaining
subdivergence  from subdiagram local divergence -term

Consider UV poles:

e Divergence from subdiagram ~ and remaining global one subtracted by usual UV counterterm
0Z1 ~,0Z9 p. Additional UV counterterm (521ﬁ o L= for subdiagrams with mass dimension 2.

e 0R,  is a two-loop rational term stemming from the interplay of N with poles

= Finite set of process-independent rational terms for UV divergent vertex functions

17



Status of two-loop rational terms

Renormalised D-dim amplitudes can be computed from amplitudes with 4-dim numerators and a

finite set of universal UV and rational counterterms inserted lower-loop amplitudes

R MQ,F = MQI + %; ((521’7 + (521’7 + 572177) . MLF//Y + (5Z27[‘ + 5R2,F)

'Rational terms of UV origin
e General method for the computation of rational counterterms of UV origin from
simple tadpole integrals in any renormalisable model [Pozzorini, Zhang, M.Z.,2020]
e Complete renormalisation scheme dependence [Lang, Pozzorini, Zhang, M.Z.2020]
e Rational Terms for Spontaneously Broken Theories [Lang, Pozzorini, Zhang, M.Z.,2021]
e Full set of two-loop rational terms computed for
— QED with full dependence on the gauge parameter [Pozzorini, Zhang, M.Z.,2020]

— SU(N) and U(1) in any renormalisation scheme [Lang, Pozzorini, Zhang, M.Z.,2020]
— QED and QCD corrections to the full SM [Lang, Pozzorini, Zhang, M.Z.,2021] /

Rational terms of IR origin (ongoing projects): Treat IR subtracted full amplitude through

modification of rational terms [573177 at O(g) = 0Ry - at O(1)| or of Catani-Seymour l-operator
— to be published soon for QED [Pozzorini, Zhang]

18


https://arxiv.org/abs/2001.11388
https://arxiv.org/abs/2007.03713
https://arxiv.org/abs/2107.10288
https://arxiv.org/abs/2001.11388
https://arxiv.org/abs/2007.03713
https://arxiv.org/abs/2107.10288

Sructure of two-loop rational terms of UV origin

Example: Two-point function of a fermion f in SU(N) or U(1) model

with Casimirs Cr, Cs and fundamental trace Ty and dimension N in Feynman gauge (A =1, Z,, = ‘;:;;‘)
ilv aq 7;27 &%) . 2 Q t° " 5 (P) 5 (m)
gauge group
R structure
SRk = —Cr,

7 61 5 1 43 1087 59

SRY) :(02—00 °T 0) (02—00 T 0)
2 ff 6F 7 35 A F+9 F 1 F€+ 26 “F T o1 A F‘|‘54 F Nt CF

B A 2 A . g 2 . . A (11'1) (IH)
Cr|0Z1 0, + 3 AN 3 021 gp Similarly for 0R ¢, R

Renormalisation scheme dependendent

e Interaction of A\ with ., poles leads to rational terms !
e Rational terms depend trivially on the scale factor ¢° of the renormalisation scheme

e At two loops: Non-trivial dependence on the renormalisation scheme can be fully expressed
in terms of the one-loop UV counterterms 2, , = (jiff) (521»(

19



Two-loop renormalisation and UV rational terms

Ingredients for full two-loop calculation: in collaboration with N. Schar
Two loops
One loop
(0Zy +0Z) +6R, )
(6Zyrt0Rs 1)
Tree-level

e Poles numerically implemented as parameter A = % with default A =0 — Finite part
e Pole parts computed and pole cancellation checked through variation of A =0,1, —1,2, —2.

20



Two-loop renormalisation and UV rational terms

Ingredients for full two-loop calculation: in collaboration with N. Schar

Two loops

One loop
° ) Z= ? + B interplay
with O(e) of integrals

e 62,0 Z doubletensor

coefficient complexity

(021 +0Z) +6R, )

e squared scalar propagator D

= Insertion in last _ )
e integrals oc

OPENLOOPS step

(0Zyr+0Ry 1)

Tree-level

e Generation and combination of all ingredients automated in OPENLOOPS framework
e Implemented for QED and QCD counterterms (currently MS, but easily extendable)

21



Validation of two-loop renormalisation and UV rational terms

in collaboration with N. Schar

Validation requires full amplitude calculation and hence tensor integrals
e Compute off-shell amplitudes to avoid IR divergences
e In-house library for simple tensor integrals (currently 2 independent external momenta, massless)
e Validation of implementation + first application of two-loop rational terms in two steps:

1. Check cancellation of UV poles — non-trivial since 0R  has ; pole

— Successfully completed for several processes

2. Computation of finite parts of amplitudes (in progress)
— Computation of off-shell two-loop QCD vertex functions with two-loop OPENLOOPS

— Comparison against literature [Gracey]

22



Two-loop tensor integral reduction

In-house tool for validation purposes and simple processes in collaboration with N. Schar

e Covariant decomposition of final result, e.g.

Moy
- _ _ 4192 v
IMY = [dqy [dgo = Ag" + 3 B;; kK"

MO g, gy~ 5 P

o Define projector for each tensor structure, here P4 € {g,u, kfkjy}
= System of equations from P}'” applied to both sides of I,

= Solve for A, B, ... (expressed in terms of scalar integrals)

e FIRE [Smirnov, Chukharev] for IBP reduction [Chetyrkin, Tkachov; Laporta] of scalar to Master integrals
e Perform e-expansion and store expressions in FORTRAN library

e Analytical expressions for Master integrals [Birthwright, Glover, Marquard] implemented
or computed with FIESTA [Smirnov]

Largely automated and easy to extend for more topologies (more legs, masses)
In practice limited due to large systems of equations in matrix inversion and IBP reduction.

— More efficient method and tool for higher-point topologies and
higher tensor ranks being developed — current project with Fabian Lange

23



V. Summary and Outlook

Challenges in automation of numerical NNLO calculations

> Real-virtual part — OPENLOOPS offers excellent numerical stability, efficiency and flexibility

> Two-loop amplitudes

'Numerical construction of 4-dim tensor coefficients
e Completely general recursive algorithm
e Highly efficient and fully implemented for QED and QCD corrections to SM

v

Reduction of tensor integrals to master integrals
e In-house tool for simple topologies — validation of renormalisation and rational terms

e New algorithm and tool for higher-point and higher-rank integrals under development

'Renormalisation and restoration of (D — 4)-dim numerator parts
e Rational terms of UV origin: o General method proven
o Computed for QED and QCD corrections to SM
e UV and rational counterterms implemented in OPENLOOPS framework
for QED and QCD corrections to SM

e Rational terms of IR origin: Ongoing project

A N
N———
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Reducible two-loop diagrams

Reducible diagram I' factorises into one-loop diagrams and a tree-like bridge P (or quartic vertex)

[/\7 (i)(qz')]ai
DU)(q;)

._‘_ 2
@, — CZ,F POQOQ Hl /dQZ
’[/:

—

with DO(q) = D{(G)--- DN (@),  D{G) = (@ +pi)® — m?,

Loop numerators factorise N 10
wy (hf!)

Sles
SN——
/N
)
~.
>
Sioa
SN———
N—
I
I

{Yaa(k?m,pm) + Zi;a QZV}

Feynman rule of loop external subtree with
vertex and propagator helicity configuration th>

into segments

e Cut-open both loops and dress first one

e Close and integrate first loop, attach bridge a B
e Use first loop + bridge as “subtree” for second loop " ‘ ‘
= Extension of the tree and one-loop algorithm DR

Fully implemented for QED and QCD corrections to the SM

26



Timings for two-loop tensor coefficients

QED, QCD and SM (NNLO QCD) processes (single Intel i7-6600U @ 2.6 GHz, 16GB RAM, 10° points)

time /point tyy [ms]

full

tvv /iRy

tvv/trv

Strong CPU performance, comparable to

104 E
103 3

102 3

Q
Q;Q.

I

uu

®dd — ua

€ > _€ €

g — tt
U

'tH

1

®59 — tig

®9 — ttH

euu g ttg
®ad uug

linear fit

average

10*
Ndiags

10°

2 — 2 process: 10 — 300 ms/psp

2 — 3 process: 65 — 9200 ms/psp
(on a laptop)

Runtime o< number of diagrams

time/psp/diagram ~ 150us

Constant ratios between virtual-
virtual (VV) and real-virtual (RV)

with and without 1-loop integrals

e tensor coefficients: YV ~
tRV

o full RV: By 4
t
RV

real-virtual corrections in OPENLOOPS

27




Processes considered in performance tests

corrections | process type | massless fermions | massive fermions process
QED 2 — 2 e — eTe” —ete
2—=3 e — ete” —ete
QCD 2 — 2 u — gg — uu
u, d — dd — uu
u - 99 — 99
U t uu — ttg
U t gg — tt
U t gg — ttg
2—3 u, d — dd — uug
U — 99 — 999
u, d — ud — WTgg
u, d — wa — WTW g
U wu — ttH
U gg — ttH

28




Memory usage of the algorithm for two-loop tensor coefficients

virtual-virtual memory [MB] real—virtual [MB]
hard process segment-by-segment | diagram-by-diagram || coefficients | full
ete” —ete” 18 8 §) 23
ete” = ete 154 25 22 54
qgg — Ul 75 31 10 26
gg — tt 94 35 15 34
gg — ttg 2000 441 152 213
ud — Wtgg 563 143 54 90
wu — WTW g 264 67 36 67
wu — ttH 82 28 14 40
gg — ttH 604 145 50 90
uu — ttg 323 33 41 74
gg — gg 271 94 41 55
dd — ut 18 10 9 20
dd — uig 288 85 39 68
gg — ggg 6299 1597 623 683

29




Numerical stability of two-loop tensor coefficients

Pseudo-tree test
e Cut-open diagram at two propagators
e Saturate indices with random wavefunctions ey, ..., ey

e Evaluate integrand constructed with new two-loop

algorithm at fixed values for q1, ¢o

2L) _ Ulq1,92) 2L o2l
= Wil = o) — Mo = I

e Compute the same object with the OPENLOOPS tree-level algorithm for fixed ¢1, ¢» = Wég)

Compute relative numerical uncertainty in double (DP) and quadruple (QP) precision

W — Wi )

A(t) = loglo ( — —
Min(AV ], PVS™)

= Implementation validated for wide range of processes (10° uniform random points)

Typical accuracy around 10712 in DP and 1072V in QP, and always much better than 10717 in QP
= QP calculation as benchmark for numerical accuracy of DP calculation

30



Numerical stability of two-loop tensor coefficients

Numerical instability of double (DP) wrt quad precision (QP) calculation:

App = logy

W

(2L,DP) W(QL QP)|

02

Min(V5-P0), i)

Fraction of points with App > A, as a function of Ay, for 10° uniform random points

107 @ ®
o
1071 .
5}
ihicy
g
2
o °
= 1072 1
S
=
Q
b
=
°
1073
10_4 B T T T T T f
—-17 —16 -15 —14 -13 —12
accuracy Amin

Excellent numerical stability

= Important for full calculation (tensor integral reduction will be main source of instabilities)

10 @ ()
°
°

1071 5
[}
i)
=
o
2,
S °
o 1072 4
o
o
=
Q
<
H

1073 5 ¢

1074 4 °

—17 ~16 ~15 ~14 ~13 ~12 ~11
accuracy Amin
dd — uug
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One-loop rational terms

Amputated one-loop diagram ~ (1PI)

Miy = Ciy [dg - =

colour factor

The e-dim numerator parts A'(q1) = N'(q1) — N(q1) contribute only via interaction with ; UV poles
= Can be restored through rational counterterm 572177 [Ossola, Papadopoulos, Pittau]

——
D—dim, renormalised  4—dim numerator UV and rational counterterm

=

Generic one-loop diagram [ factorises into 1P| subdiagram ~ and external subtrees w; (4-dim):

OERS v N
_ _ 01..0N N RM1F2M1F‘|‘ (521 ‘|‘6R1 T w;
Mir= = |M; 1 [wl, = ! r+ (071, 2) =1
Y 77 _1 0-7/ —_——
@ @ = tree diagram

Finite set of process-independent rational terms in renormalisable models
computed from UV divergent vertex functions

32



Explicit recursion steps for tensor coefficients

Triple vertex loop segment:

/[; p— kia p—
5521 B, y B

Quartic vertex segments:

4 (g, b))

with 1) = bl + b and ki = kig, + Fia,.

Dressing step for a segment with a triple vertex:

(1) (1) (1)
N Bn 1 ~(1 B4 Bn
N?%}Ll...ur(hnl)) 1) — P\/;g—)l;ul...ur(hgzzl)] (1) Yl% (1)
50 50 Bn—l
(1) (1)
1 ~(1 Bnl1 o B
N L T bl )




OPENLOOPS features

e OPENLOOPS provides all contributions of a given power in « (electroweak) and a5 (strong)

to W in a fully automated way, e.g. NLO EW corrections of O(aca) for qqg — qq
EW corrections to QCD Born QCD corrections to EW-QCD interference

o Different EW schemes implemented: «(0)-scheme, G -scheme, (M z)-scheme

e Consistent treatment of resonances with complex mass scheme at 1-loop [Denner, Dittmaier]
— complex mass ,u]% = Mg — 1 Mpl') from real physical mass M), and width I'}, as input

e Different Renormalisation schemes implemented, e.g. on-shell or M S for quark masses;
different flavour schemes for a g

e Colour and charge correlators; Spin and Spin-colour correlators
e Catani-Seymour l-operator

e Selection of helicity states — polarised initial or final states

. o o o

= Ingredients for a wide range of applications available
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The structure of OPENLOOPS

e OPENLOOPS program (public): User interfaces and process-independent routines.

e Process generator (not public): Perform analytical steps (e.g. colour factors) and generate

process-dependent code for numerical calculation — stored in process libraries

e Process libraries (public): Collection of partonic channels for a process class, e.g. pp — 77,
automatically downloaded by the user.

e Third party tools for integral evaluation (included): COLLIER [Denner, Dittmaier, Hofer], ONELOOP

[van Hameren]

Same structure at two loops. Minimal extension of widely-used interfaces
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