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Scattering amplitudes in perturbation theory

[Höche]

Hard scattering amplitudes for Monte Carlo simulations are
computed in perturbation theory from matrix elements

M̄ = M̄0 + M̄1 + M̄2 + . . .

with M̄0 = + + . . . ,

M̄1 = q1 + . . . , M̄2 = q1 q2 + . . .

Partonic cross sections computed from colour- and helicity-summed scattering probability density

W = ∑̄
h,col︸ ︷︷ ︸

colour and helicity sum with
average and symmetry factor

∣∣∣∣RM̄∣∣∣∣2 = ∑̄
h,col

 |M̄0|2︸ ︷︷ ︸
LO

+ 2 Re
M̄∗0 RM̄1


︸ ︷︷ ︸

NLO virtual

+ |RM̄1|2 + 2 Re
M̄∗0 RM̄2


︸ ︷︷ ︸

NNLO virtual-virtual

+ . . .



with UV divergences subtracted by the renormalisation procedure R M̄ = M̄0+R M̄1+R M̄2+. . .
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Scattering amplitudes in perturbation theory
Finite partonic cross sections require factorisation of initial-state collinear singularities into PDFs,
and addition of real-emission contributions to cancel final-state collinear and soft divergences

σ̂ =
∫
dΦN︸ ︷︷ ︸

N -particle phase space
integration, flux factor

W + ∑
X

∫
dΦN+X W(X)

︸ ︷︷ ︸
contribution with X extra

unresolved particles

with the real-emission scattering probability densities up to NNLO

W(1) = ∑̄
h,col

 |M̄
(1)
0 |2︸ ︷︷ ︸

NLO real

+ 2 Re
 M̄(1)

0
∗ RM̄(1)

1


︸ ︷︷ ︸
NNLO real-virtual

+ . . .

, W(2) = ∑̄
h,col

 |M̄(2)
0 |2︸ ︷︷ ︸

NNLO real-real

+ . . .



where M̄(1)
0 = + . . ., M̄(1)

1 = + . . ., M̄(2)
0 = + . . .

Challenges in automation of numerical NNLO calculations:
▷ Real-virtual contributions require excellent numerical stability in soft and collinear regions
▷ Automated calculations of virtual-virtual part 2 Re[M̄∗0 RM̄2]
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I. OpenLoops

OpenLoops [Buccioni, Lang, Lindert, Maierhöfer, Pozzorini, Zhang, M.Z.] is a fully automated numerical tool
for the computation of scattering probability densities from tree and one-loop amplitudes

W00 = ∑̄
h,col
|M̄0|2, W01 = ∑̄

h,col
2 Re

M̄∗0RM̄1
, W11 = ∑̄

h,col
|RM̄1|2

Download from https://gitlab.com/openloops/OpenLoops.git

• Full NLO QCD and NLO EW corrections available

• Efficient calculation of colour and helicity sums in squared amplitudes

• Excellent CPU performance and numerical stability due to
– On-the-fly tensor integral reduction
– Expansions to any order in critical kinematic variables
– Hybrid-precision mode (targeted use of quadruple precision, bulk in a double precision)

→ Real-emission contributions up to NNLO used e.g. in
– Matrix [Grazzini, Kallweit, Wiesemann]
– NNLOJeT [Gauld, Glover, Huss, Majer, Gehrmann-De Ridder]
– McMule [Banerjee, Engel, Signer, Ulrich] ← NNLO QED
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New feature: QED with OpenLoops
in collaboration with J. Lindert

• Separation of electromagnetic and weak contributions for given order in α

• Implementation of three massive lepton generations
• Calculations with variable number of lepton and/or quark generations

Governed by three OpenLoops parameters (dedicated process libraries required)
qed active α-corrections = 0 (full EW), 1 (pure QED), 3 (pure weak)
nf number of active quarks = 0,4,5,6
nfl number of active lepton generations = 0,1,2,3
⇒ QED calculations with different lepton masses available

Recent NNLO applications with McMule [Banerjee, Engel, Signer, Ulrich]

• Bhabba and Møller scattering (one lepton mass) [Banerjee, Engel, Schalch, Signer, Ulrich, 2021; 2022]

• Muon-electron scattering at NNLO (two different lepton masses) [Broggio, Engel, Ferroglia, Mandal,
Mastrolia, Rocco, Ronca, Signer, Torres Bobadilla, Ulrich, M.Z., 2023]
→ Complete and fully differential NNLO calculation of a 2→ 2 process with

two different non-zero masses on the external lines
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II. Automated numerical calculation of scattering amplitudes
Feynman integrals in D = 4− 2ε dimensions to regularise divergences, e.g. one-loop diagram Γ:

M̄1,Γ = C1,Γ︸ ︷︷ ︸
colour factor

∫
dq̄1
N̄ (q̄1)
D(q̄1)

=

wN−1wN

w1 w2

D0

D1

D2

DN−1

q

D(q̄1) = N−1∏
i=0

Dk(q̄1),

Dk(q̄1) = (q̄1 + pk)2 −m2
k,

∫
dq̄1 = µ2ε

∫ dD

q̄1
(2π)D

• Numerical tools, such as OpenLoops [Buccioni et al], Recola [Actis et al], MadLoop [Hirschi et al],
Helac [Bevilacqua et al] construct the numerator in 4 dimensions ⇒ Split numerator

N̄ (q̄1)︸ ︷︷ ︸
D−dim

= N (q1)︸ ︷︷ ︸
4−dim

+ Ñ (q̄1)︸ ︷︷ ︸
(D−4)−dim

with N (q1) = N̄ (q̄1)

∣∣∣∣∣∣∣∣∣∣q̄i → qi,
γ̄µ̄ → γµ,
ḡµ̄ν̄ → gµν

(project D-dim → 4-dim)

•Requirement for automation: Construct amplitude from process-independent elements
Exploit factorisation into universal building blocks: N (q1) = S1(q1) . . . SN (q1)

with loop segments Si(q1) =
βi−1

wi

ki

Di

βi

=
Y i

σ + Zi
ν;σ qν

1
︸ ︷︷ ︸

loop vertex and propagator

[wi]σ︸ ︷︷ ︸
external subtree
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Automation strategy at one loop in OpenLoops

M̄1,Γ = Nµ1···µN︸ ︷︷ ︸
4-dim coefficient

∫
dDq

qµ1 · · · qµN

D0(q) · · ·DN−1(q)
︸ ︷︷ ︸

tensor integral

+
∫
dDq

Ñ
D0(q) · · ·DN−1(q)

︸ ︷︷ ︸
(D − 4)-dim numerator

Recursive construction of tensor coefficients from the segments
of the cut-opened loop [van Hameren;
Cascioli, Maierhöfer, Pozzorini; Buccioni, Lang,
Lindert, Maierhöfer, Pozzorini, Zhang, M.Z.]

Nn(q) = Nn−1(q) ·Sn(q) =

wn

wn−1

w1

βn−1βn

β0

Tensor integrals: On-the-fly reduction [Buccioni, Pozzorini, M.Z] and external tools:
Collier [Denner, Dittmaier, Hofer], OneLoop [van Hameren]

Restoration of (D − 4)-dim numerator parts together with renormalization procedure R
through universal rational counterterms [Ossola, Papadopoulos, Pittau]

R



D-dim

=

 + ×
 δZ1,Γ︸ ︷︷ ︸

subtract divergence

+ δR1,Γ︸ ︷︷ ︸
restore Ñ -term



4-dim
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Two-loop diagrams

C1

q1

P

C2

q2

C1

q1

C2

q2

V4

C1 C3

C2

V0

V1

q1 q2

q3

(Red2) (Red1) (Irreducible)

Diagrams consist of loop chains Ci, each depending on a single loop momentum qi.
Types of diagrams:
• Reducible diagrams: Two factorised loop integrals

– Red2: Two loop chains C1, C2 connected by a tree-like bridge P .
– Red1: Two loop chains C1, C2 connected by a single quartic vertex V4

Extension of one-loop OpenLoops → Fully implemented

• Irreducible diagrams: Three loop chains C1, C2, C3 with loop momenta
q1, q2, q3 = −(q1 + q2) and two connecting vertices V0,V1
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Irreducible two-loop diagrams
Irreducible two-loop diagram Γ (1PI on amputation of all external subtrees):

M̄2,Γ =

w(1)
1

w(1)
2

w(1)

N1−1

D(1)
0

D(1)
1

D(1)

N1−1

w(3)
1

w(3)

N3−1

D(3)
0

D(3)
N3−1

w(2)
1

w(2)
2

w(2)

N2−1

D(2)
0

D(2)
1

D(2)

N2−1

V0

V1

q1 q2

q3

= C2,Γ
∫
dDq1

∫
dDq2

N̄ (q1, q2)
3∏

i=1
D(i)(qi)

∣∣∣∣∣∣q3→−(q1+q2)

• Numerical calculation in integer dimensions ⇒ Split numerator

N̄ (q̄1, q̄2)︸ ︷︷ ︸
D−dim

= N (q1, q2)︸ ︷︷ ︸
4−dim

+ Ñ (q̄1, q̄2)︸ ︷︷ ︸
(D−4)−dim

with N (q1, q2) = N̄ (q̄1, q̄2)

∣∣∣∣∣∣∣∣∣∣q̄i → qi,
γ̄µ̄ → γµ,
ḡµ̄ν̄ → gµν

• Exploit factorisation into universal building blocks

▷ Numerator N (q1, q2) = 3∏
i=1
N (i)(qi)

1∏
j=0
Vj(q1, q2) with N (i)(qi) = S

(i)
0 (qi) · · ·S

(i)
Ni−1(qi)

▷ Denominators D(i)(qi) = D
(i)
0 (qi) · · ·D

(i)
Ni−1(qi) where D

(i)
a (qi) = (qi + pia)2 −m2

ia
(External momenta pia and masses mia along i-th chain)
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III. Automation strategy at two loops

M̄2,Γ = Nµ1···µrν1···νs

∫
dDq1

∫
dDq2

q
µ1
1 · · · q

µr
1 qν1

2 · · · q
νs
2∏

i,j
D

(i)
j (qi)

+
∫
dDq1

∫
dDq2

Ñ
∏
i,j

D
(i)
j (qi)

∣∣∣∣∣∣∣∣∣∣q3=−(q1+q2)

Numerical construction of 4-dim tensor coefficients
Completely general recursive algorithm [Pozzorini, Schär, M.Z.] with steps
Nn(q1, q2) = Nn−1(q1, q2) · Kn where Kn ∈ {S

(i)
n (qi),V0,1(q1, q2)}

Reduction of tensor integrals −→ scalar integrals Ik −→ master integrals IM
l

→ Evaluation of master integrals with external tools
Bottle neck of NNLO automation → Main focus of our current projects

Restoration of (D − 4)-dim numerator parts from universal two-loop rational terms
[Lang, Pozzorini, Zhang, M.Z.] stemming from the interplay of Ñ with UV and IR divergences.
→ together with renormalisation procedure via counterterm insertions in lower-loop diagrams
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Two-loop tensor coefficients (irreducible diagrams)

• Sort chains by length: N1 ≥ N2 ≥ N3
Choose order of V0,V1 by vertex type

• Dress N (3) (shortest chain)

Example: n = 1

V1

V0

w(1)
1

w(1)
2

w(1)
3

w(3)
1

w(2)
1

w(2)
2

q1 q2

q3

N (3)
n (q3) = N (3)

n−1(q3) · S(3)
n (q3) with initial condition N (3)

−1 = 11

Partial chains N (3)
n computed only once for multiple diagrams
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Two-loop tensor coefficients (irreducible diagrams)

• Sort chains by length: N1 ≥ N2 ≥ N3
Choose order of V0,V1 by vertex type

• Dress N (3) (shortest chain)

• Dress U (1) ∝M∗0N (1) (longest chain)

Example: n = 0

V1

V0

w(1)
1

w(1)
2

w(1)
3

w(3)
1

w(2)
1

w(2)
2

q1 q2

q3

U (1)
n (q1, ȟ(1)

n ) = ∑
h

(1)
n

U (1)
n−1(q1, ȟ

(1)
n−1) · S(1)

n (q1, h(1)
n ) with U (1)

−1(h) = 2
 ∑

col
M∗0(h)︸ ︷︷ ︸

Born

C2,Γ︸ ︷︷ ︸
colour



Initial building block: Born-colour interference depending on helicity h of all external particles
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Two-loop tensor coefficients (irreducible diagrams)

• Sort chains by length: N1 ≥ N2 ≥ N3
Choose order of V0,V1 by vertex type

• Dress N (3) (shortest chain)

• Dress U (1) ∝M∗0N (1) (longest chain)

Example: n = 1

V1

V0

w(1)
1

w(1)
2

w(1)
3

w(3)
1

w(2)
1

w(2)
2

q1 q2

q3

U (1)
n (q1, ȟ(1)

n ) = ∑
h

(1)
n

U (1)
n−1(q1, ȟ

(1)
n−1) · S(1)

n (q1, h(1)
n ) with U (1)

−1(h) = 2
 ∑

col
M∗0(h)︸ ︷︷ ︸

Born

C2,Γ︸ ︷︷ ︸
colour



On-the-fly summation of segment helicities h
(1)
n

→ Constructed object depends on helicities of remaining (undressed) segments of the diagram ȟ
(1)
n
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Two-loop tensor coefficients (irreducible diagrams)

• Sort chains by length: N1 ≥ N2 ≥ N3
Choose order of V0,V1 by vertex type

• Dress N (3) (shortest chain)

• Dress U (1) ∝M∗0N (1) (longest chain)

Example: n = 2

V1

V0

w(1)
1

w(1)
2

w(1)
3

w(3)
1

w(2)
1

w(2)
2

q1 q2

q3

U (1)
n (q1, ȟ(1)

n ) = ∑
h

(1)
n

U (1)
n−1(q1, ȟ

(1)
n−1) · S(1)

n (q1, h(1)
n ) with U (1)

−1(h) = 2
 ∑

col
M∗0(h)︸ ︷︷ ︸

Born

C2,Γ︸ ︷︷ ︸
colour



On-the-fly summation of segment helicities h
(1)
n

→ Constructed object depends on helicities of remaining (undressed) segments of the diagram ȟ
(1)
n
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Two-loop tensor coefficients (irreducible diagrams)

• Sort chains by length: N1 ≥ N2 ≥ N3
Choose order of V0,V1 by vertex type

• Dress N (3) (shortest chain)

• Dress U (1) ∝M∗0N (1) (longest chain)

Example: n = 3

V1

V0

w(1)
1

w(1)
2

w(1)
3

w(3)
1

w(2)
1

w(2)
2

q1 q2

q3

U (1)
n (q1, ȟ(1)

n ) = ∑
h

(1)
n

U (1)
n−1(q1, ȟ

(1)
n−1) · S(1)

n (q1, h(1)
n ) with U (1)

−1(h) = 2
 ∑

col
M∗0(h)︸ ︷︷ ︸

Born

C2,Γ︸ ︷︷ ︸
colour



On-the-fly summation of segment helicities h
(1)
n

→ Constructed object depends on helicities of remaining (undressed) segments of the diagram ȟ
(1)
n

⇒ Most helicity d.o.f already summed at stage with low tensor rank complexity
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Two-loop tensor coefficients (irreducible diagrams)

• Sort chains by length: N1 ≥ N2 ≥ N3
Choose order of V0,V1 by vertex type

• Dress N (3) (shortest chain)

• Dress U (1) ∝M∗0N (1) (longest chain)

• Connect V1 with U (1) and N (3)

Example:

V1

V0

w(1)
1

w(1)
2

w(1)
3

w(3)
1

w(2)
1

w(2)
2

q1 q2

q3

U (13)
1 (q1, q3, h(2)) = ∑

h(3)
U (1)(q1, ȟ

(1)
N1−1) N

(3)(q3, h(3)) V1(q1, q3)

Highest complexity step due to dependence on 3 open indices and 2 loop momenta
→ performed at lowest rank in q2 and for only a few unsummed helicity configurations
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Two-loop tensor coefficients (irreducible diagrams)

• Sort chains by length: N1 ≥ N2 ≥ N3
Choose order of V0,V1 by vertex type

• Dress N (3) (shortest chain)

• Dress U (1) ∝M∗0N (1) (longest chain)

• Connect V1 with U (1) and N (3)

• Connect V0 and map q3 → −(q1 + q2)

Example:

V1

V0

w(1)
1

w(1)
2

w(1)
3

w(3)
1

w(2)
1

w(2)
2

q1 q2

q3

U (123)
−1 (q1, q2, h(2)) = U (13)

1 (q1, q3, h(2)) V0(q1, q2)
∣∣∣∣∣∣q3→−(q1+q2)
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Two-loop tensor coefficients (irreducible diagrams)

• Sort chains by length: N1 ≥ N2 ≥ N3
Choose order of V0,V1 by vertex type

• Dress N (3) (shortest chain)

• Dress U (1) ∝M∗0N (1) (longest chain)

• Connect V1 with U (1) and N (3)

• Connect V0 and map q3 → −(q1 + q2)

• Connect segments of N (2)

Example: n = 0

V1

V0

w(1)
1

w(1)
2

w(1)
3

w(3)
1

w(2)
1

w(2)
2

q1 q2

q3

U (123)
n (q1, q2, h̃(2)

n ) = ∑
h

(2)
n

U (123)
n−1 (q1, q2, h̃

(2)
n−1) S(2)

n (q2, h(2)
n )

On-the-fly summation of segment helicities h
(2)
n

→ Constructed object depends on helicities of remaining (undressed) segments of the diagram h̃
(2)
n
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Two-loop tensor coefficients (irreducible diagrams)

• Sort chains by length: N1 ≥ N2 ≥ N3
Choose order of V0,V1 by vertex type

• Dress N (3) (shortest chain)

• Dress U (1) ∝M∗0N (1) (longest chain)

• Connect V1 with U (1) and N (3)

• Connect V0 and map q3 → −(q1 + q2)

• Connect segments of N (2)

Example: n = 1

V1

V0

w(1)
1

w(1)
2

w(1)
3

w(3)
1

w(2)
1

w(2)
2

q1 q2

q3

U (123)
n (q1, q2, h̃(2)

n ) = ∑
h

(2)
n

U (123)
n−1 (q1, q2, h̃

(2)
n−1) S(2)

n (q2, h(2)
n )

On-the-fly summation of segment helicities h
(2)
n

→ Constructed object depends on helicities of remaining (undressed) segments of the diagram h̃
(2)
n
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Two-loop tensor coefficients (irreducible diagrams)

• Sort chains by length: N1 ≥ N2 ≥ N3
Choose order of V0,V1 by vertex type

• Dress N (3) (shortest chain)

• Dress U (1) ∝M∗0N (1) (longest chain)

• Connect V1 with U (1) and N (3)

• Connect V0 and map q3 → −(q1 + q2)

• Connect segments of N (2)

Example: n = 2

V1

V0

w(1)
1

w(1)
2

w(1)
3

w(3)
1

w(2)
1

w(2)
2

q1 q2

q3

U (123)
n (q1, q2, h̃(2)

n ) = ∑
h

(2)
n

U (123)
n−1 (q1, q2, h̃

(2)
n−1) S(2)

n (q2, h(2)
n )

On-the-fly summation of segment helicities h
(2)
n

→ Constructed object depends on helicities of remaining (undressed) segments of the diagram h̃
(2)
n

⇒ Lowest complexity in helicities for steps with highest rank in loop momenta
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Two-loop tensor coefficients (irreducible diagrams)

• Sort chains by length: N1 ≥ N2 ≥ N3
Choose order of V0,V1 by vertex type

• Dress N (3) (shortest chain)

• Dress U (1) ∝M∗0N (1) (longest chain)

• Connect V1 with U (1) and N (3)

• Connect V0 and map q3 → −(q1 + q2)

• Connect segments of N (2)

Example:

V1

V0

w(1)
1

w(1)
2

w(1)
3

w(3)
1

w(2)
1

w(2)
2

q1 q2

q3

Highly efficient and completely general algorithm for two-loop tensor coefficients

Fully implemented for QED and QCD corrections to the SM
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Two-loop rational terms
Renormalised D-dim amplitudes from amplitudes with 4-dim numerator [Pozzorini, Zhang, M.Z.]

R



D-dim

=
4-dim

+
4-dim

 δZ1,γ + δZ̃1,γ︸ ︷︷ ︸
subtract

subdivergence

+ δR1,γ︸ ︷︷ ︸
restore Ñ -term

from subdiagram

 +
 δZ2,Γ︸ ︷︷ ︸

subtract remaining
local divergence

+ δR2,Γ︸ ︷︷ ︸
restore remaining
Ñ -term



Consider UV poles:

• Divergence from subdiagram γ and remaining global one subtracted by usual UV counterterm
δZ1,γ, δZ2,Γ. Additional UV counterterm δZ̃1,γ ∝

q̃12
ε for subdiagrams with mass dimension 2.

• δR2,Γ is a two-loop rational term stemming from the interplay of Ñ with poles
⇒ Finite set of process-independent rational terms for UV divergent vertex functions
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Status of two-loop rational terms
Renormalised D-dim amplitudes can be computed from amplitudes with 4-dim numerators and a
finite set of universal UV and rational counterterms inserted lower-loop amplitudes

RM̄2,Γ = M2,Γ + ∑
γ

δZ1,γ + δZ̃1,γ + δR1,γ

 · M1,Γ/γ +
δZ2,Γ + δR2,Γ



Rational terms of UV origin
• General method for the computation of rational counterterms of UV origin from

simple tadpole integrals in any renormalisable model [Pozzorini, Zhang, M.Z.,2020]

• Complete renormalisation scheme dependence [Lang, Pozzorini, Zhang, M.Z.,2020]

• Rational Terms for Spontaneously Broken Theories [Lang, Pozzorini, Zhang, M.Z.,2021]

• Full set of two-loop rational terms computed for
– QED with full dependence on the gauge parameter [Pozzorini, Zhang, M.Z.,2020]

– SU(N) and U(1) in any renormalisation scheme [Lang, Pozzorini, Zhang, M.Z.,2020]

– QED and QCD corrections to the full SM [Lang, Pozzorini, Zhang, M.Z.,2021] ✓
Rational terms of IR origin (ongoing projects): Treat IR subtracted full amplitude through
modification of rational terms

δR1,γ at O(ε) → δR2,γ at O(1)
 or of Catani-Seymour I-operator

→ to be published soon for QED [Pozzorini, Zhang]
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Sructure of two-loop rational terms of UV origin
Example: Two-point function of a fermion f in SU(N) or U(1) model
with Casimirs CF, CA and fundamental trace TF and dimension N in Feynman gauge (λ = 1, Zgp = ZA

Zλ
)

i1, α1 i2, α2 = i δi1i2︸ ︷︷ ︸
gauge group
structure


2∑

k=1

αs tε

4π


k δR̂(P)

k,ff /pα1α2
+ δR̂(m)

k,ff mf δα1α2


 ,

δR̂(P)
1,ff = − CF ,

δR̂(P)
2,ff =

7
6

C2
F −

61
36

CA CF + 5
9

TF nf CF

 1
ε

+
43
36

C2
F −

1087
216

CA CF + 59
54

TF nf CF



− CF


δẐ1,αs

+ 2
3

δẐ1,f −
2
3

δẐ1,gp︸ ︷︷ ︸
Renormalisation scheme dependendent


Similarly for δR̂(m)

1,ff,R
(m)
2,ff

• Interaction of Ñ with 1
ε2 poles leads to rational terms ∝ 1

ε

• Rational terms depend trivially on the scale factor tε of the renormalisation scheme

• At two loops: Non-trivial dependence on the renormalisation scheme can be fully expressed
in terms of the one-loop UV counterterms Z1,χ =

(
α tε

4π

)
δẐ1,χ
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Two-loop renormalisation and UV rational terms
Ingredients for full two-loop calculation: in collaboration with N. Schär

Two loops
C1 C3

C2

V0

V1

q1 q2

q3

C1

q1

C2

q2

V4

C1

q1

P

C2

q2

One loop

×
(δZ1,γ+δZ̃1,γ+δR1,γ)

×
(δZ1,γ+δR1,γ)

×
(δZ1,γ+δR1,γ)

Tree-level ×

(δZ2,Γ+δR2,Γ)

×

(δZ1,γ2
+δR1,γ2

)

×

(δZ1,γ1
+δR1,γ1

)

• Poles numerically implemented as parameter ∆ = 1
ε with default ∆ = 0 → Finite part

• Pole parts computed and pole cancellation checked through variation of ∆ = 0, 1,−1, 2,−2.
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Two-loop renormalisation and UV rational terms
Ingredients for full two-loop calculation: in collaboration with N. Schär

Two loops
C1 C3

C2

V0

V1

q1 q2

q3

C1

q1

C2

q2

V4

C1

q1

P

C2

q2

One loop
• δZ= A

ε + B interplay
withO(ε) of integrals
• δZ, δZ̃ double tensor

coefficient complexity
×

(δZ1,γ+δZ̃1,γ+δR1,γ)

×
(δZ1,γ+δR1,γ)

×
(δZ1,γ+δR1,γ)

⇒ Insertion in last
OpenLoops step

• squared scalar propagator D0
• integrals ∝ q̃2

ε

Tree-level ×

(δZ2,Γ+δR2,Γ)

×

(δZ1,γ2
+δR1,γ2

)

×

(δZ1,γ1
+δR1,γ1

)

• Generation and combination of all ingredients automated in OpenLoops framework
• Implemented for QED and QCD counterterms (currently MS, but easily extendable)
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Validation of two-loop renormalisation and UV rational terms
in collaboration with N. Schär
Validation requires full amplitude calculation and hence tensor integrals

• Compute off-shell amplitudes to avoid IR divergences

• In-house library for simple tensor integrals (currently 2 independent external momenta, massless)

• Validation of implementation + first application of two-loop rational terms in two steps:

1. Check cancellation of UV poles → non-trivial since δR2,Γ has 1
ε pole

→ Successfully completed for several processes

2. Computation of finite parts of amplitudes (in progress)
→ Computation of off-shell two-loop QCD vertex functions with two-loop OpenLoops
→ Comparison against literature [Gracey]
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Two-loop tensor integral reduction
In-house tool for validation purposes and simple processes in collaboration with N. Schär
• Covariant decomposition of final result, e.g.

Iµ;ν =
∫
dq̄1

∫
dq̄2

q
µ
1 qν

2
D(q1, q2, {ki})

= A gµν + ∑
i

Bij k
µ
i kν

j

• Define projector for each tensor structure, here P µν
a ∈ {gµν, k

µ
i kν

j }
⇒ System of equations from P µν

a applied to both sides of Iµ;ν
⇒ Solve for A, Bij, ... (expressed in terms of scalar integrals)

• FIRE [Smirnov, Chukharev] for IBP reduction [Chetyrkin, Tkachov; Laporta] of scalar to Master integrals

• Perform ε-expansion and store expressions in FORTRAN library

• Analytical expressions for Master integrals [Birthwright, Glover, Marquard] implemented
or computed with FIESTA [Smirnov]

Largely automated and easy to extend for more topologies (more legs, masses)
In practice limited due to large systems of equations in matrix inversion and IBP reduction.

→ More efficient method and tool for higher-point topologies and
higher tensor ranks being developed → current project with Fabian Lange
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V. Summary and Outlook
Challenges in automation of numerical NNLO calculations
▷ Real-virtual part → OpenLoops offers excellent numerical stability, efficiency and flexibility
▷ Two-loop amplitudes
Numerical construction of 4-dim tensor coefficients
• Completely general recursive algorithm
• Highly efficient and fully implemented for QED and QCD corrections to SM ✓
Reduction of tensor integrals to master integrals
• In-house tool for simple topologies → validation of renormalisation and rational terms
• New algorithm and tool for higher-point and higher-rank integrals under development

Renormalisation and restoration of (D − 4)-dim numerator parts
• Rational terms of UV origin: ◦ General method proven

◦ Computed for QED and QCD corrections to SM
• UV and rational counterterms implemented in OpenLoops framework

for QED and QCD corrections to SM
• Rational terms of IR origin: Ongoing project

✓

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Reducible two-loop diagrams

Reducible diagram Γ factorises into one-loop diagrams and a tree-like bridge P (or quartic vertex)

M̄2,Γ =

w(1)
1

w(1)

N1−1

D(1)
0

D(1)
1

D(1)

N1−1

q1

P

w(2)
N2

w(2)
2

D(2)

N2−1

D(2)
1

D(2)
0

q2

= C2,Γ Pα1α2
2∏

i=1

∫
dq̄i

N̄ (i)(qi)
αi

D(i)(q̄i)

with D(i)(q̄i) = D
(i)
0 (q̄i) · · ·D(i)

Ni−1(q̄i) , D(i)
a (q̄i) = (q̄i + pia)2 −m2

ia

Loop numerators factorise
into segments

S
(i)
a (qi, h

(i)
a ) =

β
(i)
a−1

w(i)

a

kia

β(i)
a

=
Y a

σ (kia, pia) + Zi
ν;σ qν

i

︸ ︷︷ ︸
Feynman rule of loop
vertex and propagator

w(i)
a (h(i)

a )
σ

︸ ︷︷ ︸
external subtree with
helicity configuration h(i)

a

• Cut-open both loops and dress first one
• Close and integrate first loop, attach bridge
• Use first loop + bridge as “subtree” for second loop
⇒ Extension of the tree and one-loop algorithm

w(1)
1

w(1)

N1−1

D(1)
0

D(1)
1

D(1)

N1−1

q1

w(B)
1 w(B)

NB

w(2)
N2

w(2)
2

D(2)

N2−1

D(2)
1

D(2)
0

q2

Fully implemented for QED and QCD corrections to the SM
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Timings for two-loop tensor coefficients

QED, QCD and SM (NNLO QCD) processes (single Intel i7-6600U @ 2.6 GHz, 16GB RAM, 103 points)

101

102

103

104

ti
m

e/
p

o
in

t
t V

V
[m

s]

e+e− → e+e−

e+e− → e+e−γ
gg → uū

dd̄→ uū

dd̄→ uūg

uū→ tt̄g

gg → tt̄

gg → tt̄g

ud̄→ W+gg

uū→ W+W−g

uū→ tt̄H

gg → tt̄H

gg → gg

gg → ggg

linear fit

2
4
6
8

t V
V
/t

fu
ll

R
V

average

102 103 104 105

Ndiags

6
8

10
12

t V
V
/
t R

V

2→ 2 process: 10− 300 ms/psp

2→ 3 process: 65− 9200 ms/psp
(on a laptop)

Runtime ∝ number of diagrams
time/psp/diagram ∼ 150µs

Constant ratios between virtual–
virtual (VV) and real-virtual (RV)
with and without 1-loop integrals
• tensor coefficients: tVV

tRV
∼ 9

• full RV: tVV
tfull
RV
∼ 4

Strong CPU performance, comparable to real-virtual corrections in OpenLoops
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Processes considered in performance tests

corrections process type massless fermions massive fermions process
QED 2→ 2 e − e+e− → e+e−

2→ 3 e − e+e− → e+e−γ
QCD 2→ 2 u − gg → uū

u, d − dd̄→ uū
u − gg → gg
u t uū→ tt̄g
u t gg → tt̄
u t gg → tt̄g

2→ 3 u, d − dd̄→ uūg
u − gg → ggg

u, d − ud̄→ W +gg
u, d − uū→ W +W−g
u t uū→ tt̄H
u t gg → tt̄H
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Memory usage of the algorithm for two-loop tensor coefficients

virtual–virtual memory [MB] real–virtual [MB]
hard process segment-by-segment diagram-by-diagram coefficients full
e+e− → e+e− 18 8 6 23
e+e− → e+e−γ 154 25 22 54
gg → uū 75 31 10 26
gg → tt̄ 94 35 15 34
gg → tt̄g 2000 441 152 213
ud̄→ W +gg 563 143 54 90
uū→ W +W−g 264 67 36 67
uū→ tt̄H 82 28 14 40
gg → tt̄H 604 145 50 90
uū→ tt̄g 323 83 41 74
gg → gg 271 94 41 55
dd̄→ uū 18 10 9 20
dd̄→ uūg 288 85 39 68
gg → ggg 6299 1597 623 683
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Numerical stability of two-loop tensor coefficients

Pseudo-tree test

• Cut-open diagram at two propagators

• Saturate indices with random wavefunctions e1, . . . , e4

• Evaluate integrand constructed with new two-loop
algorithm at fixed values for q1, q2

⇒ Ŵ(2L)
02,Γ = U(q1,q2)

D(q1,q2) ⇒ Ŵ(2L)
02 = ∑

Γ
Ŵ(2L)

02,Γ

e1e2
e3 e4

D(1)
0

D(3)
0

D(2)
0

V0

V1

q1 q2

q3

• Compute the same object with the OpenLoops tree-level algorithm for fixed q1, q2 ⇒ Ŵ
(t)
02

Compute relative numerical uncertainty in double (DP) and quadruple (QP) precision

A(t) := log10

 |Ŵ(t)
02 − Ŵ

(2L)
02 |

Min(|Ŵ(t)
02 |, |Ŵ

(2L)
02 |)


⇒ Implementation validated for wide range of processes (105 uniform random points)

Typical accuracy around 10−15 in DP and 10−30 in QP, and always much better than 10−17 in QP
⇒ QP calculation as benchmark for numerical accuracy of DP calculation
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Numerical stability of two-loop tensor coefficients

Numerical instability of double (DP) wrt quad precision (QP) calculation:

ADP = log10

 |Ŵ(2L,DP)
02 − Ŵ(2L,QP)

02 |
Min(|Ŵ(2L,DP)

02 |, |Ŵ(2L,QP)
02 |)


Fraction of points with ADP > Amin as a function of Amin for 105 uniform random points

−12−13−14−15−16−17

accuracy Amin

10−4

10−3

10−2

10−1

100

fr
ac

ti
on

of
p

oi
n
ts

gg → t̄t

−11−12−13−14−15−16−17

accuracy Amin

10−4

10−3

10−2

10−1

100

fr
ac

ti
on

of
p

oi
n
ts

dd̄→ uūg

Excellent numerical stability
⇒ Important for full calculation (tensor integral reduction will be main source of instabilities)
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One-loop rational terms

Amputated one-loop diagram γ (1PI)

M̄1,γ = C1,γ︸ ︷︷ ︸
colour factor

∫
dq̄1
N (q1) + Ñ (q̄1)
D(q̄1)

= D0

D1

D2

DN−1

q1 ⇒ δR1,γ = C1,γ
∫
dq̄1
Ñ (q̄1)
D(q̄1)

The ε-dim numerator parts Ñ (q̄1) = N̄ (q̄1)−N (q1) contribute only via interaction with 1
ε UV poles

⇒ Can be restored through rational counterterm δR1,γ [Ossola, Papadopoulos, Pittau]

⇒ RM̄1,γ︸ ︷︷ ︸
D−dim, renormalised

= M1,γ︸ ︷︷ ︸
4−dim numerator

+ δZ1,γ + δR1,γ︸ ︷︷ ︸
UV and rational counterterm

Generic one-loop diagram Γ factorises into 1PI subdiagram γ and external subtrees wi (4-dim):

M̄1,Γ =

wN−1wN

w1 w2

=
M̄1,γ

σ1...σN N∏
i=1

[wi]σi
⇒

RM̄1,Γ =M1,Γ +
(
δZ1,γ + δR1,γ

) N∏
i=1

wi
︸ ︷︷ ︸

tree diagram

Finite set of process-independent rational terms in renormalisable models
computed from UV divergent vertex functions
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Explicit recursion steps for tensor coefficients

Triple vertex loop segment:

S(i)
a (qi, h(i)

a )
β

(i)
a

β
(i)
a−1

=
β

(i)
a−1

w(i)

a

kia

β(i)
a

=


Y σ

ia

β
(i)
a

β
(i)
a−1

+
Zσ

ia,ν

β
(i)
a

β
(i)
a−1

qν
i

 w(i)
aσ(kia, h(i)

a )

Quartic vertex segments:

S(i)
a (qi, h(i)

a )
β

(i)
a

β
(i)
a−1

=
β

(i)
a−1

w(i)

a1
w(i)

a2

kia1
kia2

β(i)
a

=
Y σ1σ2

ia

β
(i)
a

β
(i)
a−1

w(i)
a1σ1(kia1, h(i)

a1 ) w(i)
a2σ2(kia2, h(i)

a2 )

with h
(i)
a = h

(i)
a1 + h

(i)
a2 and kia = kia1 + kia2.

Dressing step for a segment with a triple vertex:
N (1)

n; µ1...µr
(ĥ(1)

n )
β

(1)
n

β
(1)
0

=


N (1)

n−1; µ1...µr
(ĥ(1)

n−1)
β

(1)
n−1

β
(1)
0

Y σ
1n

β
(1)
n

β
(1)
n−1

+
N (1)

n−1; µ2...µr
(ĥ(1)

n−1)
β

(1)
n−1

β
(1)
0

Zσ
1n,µ1

β
(1)
n

β
(1)
n−1

 w(1)
nσ(kn, h(1)

n ).
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OpenLoops features
• OpenLoops provides all contributions of a given power in α (electroweak) and αs (strong)

to W in a fully automated way, e.g. NLO EW corrections of O(α2
Sα1) for qq̄ → qq̄:

γ γ

+
γ, Z

︸ ︷︷ ︸
EW corrections to QCD Born

+
γ, Z

+
γ, Z

︸ ︷︷ ︸
QCD corrections to EW–QCD interference

• Different EW schemes implemented: α(0)-scheme, Gµ-scheme, α(MZ)-scheme
• Consistent treatment of resonances with complex mass scheme at 1-loop [Denner, Dittmaier]

→ complex mass µ2
p = M2

p − i MpΓp from real physical mass Mp and width Γp as input
• Different Renormalisation schemes implemented, e.g. on-shell or MS for quark masses;

different flavour schemes for αS

• Colour and charge correlators; Spin and Spin-colour correlators
• Catani-Seymour I-operator
• Selection of helicity states → polarised initial or final states
• · · ·
⇒ Ingredients for a wide range of applications available
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The structure of OpenLoops

• OpenLoops program (public): User interfaces and process-independent routines.

• Process generator (not public): Perform analytical steps (e.g. colour factors) and generate
process-dependent code for numerical calculation → stored in process libraries

• Process libraries (public): Collection of partonic channels for a process class, e.g. pp→ jj,
automatically downloaded by the user.

• Third party tools for integral evaluation (included): Collier [Denner, Dittmaier, Hofer], OneLoop
[van Hameren]

Same structure at two loops. Minimal extension of widely-used interfaces
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