

PAUL SCHERRER INSTITUT

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

Status of two-loop automation in OpenLoops

M. F. Zoller

Loops and Legs in Quantum Field Theory, 18 April 2024, Wittenberg

Scattering amplitudes in perturbation theory

Partonic cross sections computed from colour- and helicity-summed scattering probability density

$$\mathcal{W} = \sum_{\substack{h, \text{col} \\ \text{average and symmetry factor}}}^{\tilde{}} \left| \mathbf{R}\bar{\mathcal{M}} \right|^{2} = \sum_{\substack{h, \text{col} \\ \text{LO}}}^{\tilde{}} \left\{ \underbrace{|\bar{\mathcal{M}}_{0}|^{2}}_{\text{LO}} + \underbrace{2\operatorname{Re}\left[\bar{\mathcal{M}}_{0}^{*}\mathbf{R}\bar{\mathcal{M}}_{1}\right]}_{\text{NLO virtual}} + \underbrace{|\mathbf{R}\bar{\mathcal{M}}_{1}|^{2} + 2\operatorname{Re}\left[\bar{\mathcal{M}}_{0}^{*}\mathbf{R}\bar{\mathcal{M}}_{2}\right]}_{\text{NNLO virtual-virtual}} + \dots \right\}$$

with UV divergences subtracted by the renormalisation procedure $\mathbf{R} \, \bar{\mathcal{M}} = \bar{\mathcal{M}}_0 + \mathbf{R} \, \bar{\mathcal{M}}_1 + \mathbf{R} \, \bar{\mathcal{M}}_2 + \dots$

Scattering amplitudes in perturbation theory

Finite partonic cross sections require factorisation of initial-state collinear singularities into PDFs, and addition of **real-emission contributions** to cancel final-state collinear and soft divergences

with the real-emission scattering probability densities up to NNLO

$$\mathcal{W}^{(1)} = \sum_{h,\text{col}} \left\{ \underbrace{|\bar{\mathcal{M}}_{0}^{(1)}|^{2}}_{\text{NLO real}} + \underbrace{2 \operatorname{Re}\left[\left(\bar{\mathcal{M}}_{0}^{(1)}\right)^{*} \mathbf{R} \bar{\mathcal{M}}_{1}^{(1)}\right]}_{\text{NNLO real-virtual}} + \ldots \right\}, \quad \mathcal{W}^{(2)} = \sum_{h,\text{col}} \left\{ \underbrace{|\bar{\mathcal{M}}_{0}^{(2)}|^{2}}_{\text{NNLO real-real}} + \ldots \right\}$$
where $\bar{\mathcal{M}}_{0}^{(1)} = \underbrace{\bar{\mathcal{M}}_{0}^{(1)}}_{\text{usec}} + \ldots, \quad \bar{\mathcal{M}}_{1}^{(1)} = \underbrace{\bar{\mathcal{M}}_{0}^{(1)}}_{\text{usec}} + \ldots, \quad \bar{\mathcal{M}}_{0}^{(2)} = \underbrace{\bar{\mathcal{M}}_{0}^{(2)}}_{\text{usec}} + \ldots$

Challenges in automation of numerical NNLO calculations:

- > Real-virtual contributions require excellent numerical stability in soft and collinear regions
- \triangleright Automated calculations of virtual-virtual part $2 \operatorname{Re}[\bar{\mathcal{M}}_0^* \mathbf{R} \bar{\mathcal{M}}_2]$

Outline

I. OPENLOOPS (tree-level and one-loop public version)

II. Automated numerical calculation of scattering amplitudes

 \rightarrow Strategy at one and two loops

III. Status of two-loop amplitudes in $\operatorname{OPENLOOPS}$

- (i) Tensor coefficients
- (ii) Tensor integrals
- (iii) Rational terms
- IV. Summary and Outlook

I. OpenLoops

OPENLOOPS [Buccioni, Lang, Lindert, Maierhöfer, Pozzorini, Zhang, M.Z.] is a fully automated numerical tool for the computation of **scattering probability densities** from tree and one-loop amplitudes

$$\mathcal{W}_{00} = \sum_{h,\text{col}} |\bar{\mathcal{M}}_0|^2, \qquad \mathcal{W}_{01} = \sum_{h,\text{col}} 2 \operatorname{Re} \left[\bar{\mathcal{M}}_0^* \mathbf{R} \bar{\mathcal{M}}_1 \right], \qquad \mathcal{W}_{11} = \sum_{h,\text{col}} |\mathbf{R} \bar{\mathcal{M}}_1|^2$$

Download from https://gitlab.com/openloops/OpenLoops.git

- \bullet Full NLO QCD and NLO EW corrections available
- Efficient calculation of colour and helicity sums in squared amplitudes
- Excellent CPU performance and numerical stability due to
 - On-the-fly tensor integral reduction
 - Expansions to any order in critical kinematic variables
 - Hybrid-precision mode (targeted use of quadruple precision, bulk in a double precision)
- \rightarrow Real-emission contributions up to NNLO used e.g. in
 - MATRIX [Grazzini, Kallweit, Wiesemann]
 - NNLOJET [Gauld, Glover, Huss, Majer, Gehrmann-De Ridder]
 - MCMULE [Banerjee, Engel, Signer, Ulrich]

 $\leftarrow \mathsf{NNLO}\;\mathsf{QED}$

New feature: **QED** with **OPENLOOPS**

in collaboration with J. Lindert

- Separation of electromagnetic and weak contributions for given order in $\boldsymbol{\alpha}$
- Implementation of three massive lepton generations
- Calculations with variable number of lepton and/or quark generations

Governed by three OPENLOOPS parameters (dedicated process libraries required)

qed	active α -corrections	= 0 (full EW), 1 (pure QED), 3 (pure weak)
nf	number of active quarks	= 0,4,5,6
nfl	number of active lepton generations	= 0,1,2,3

\Rightarrow QED calculations with different lepton masses available

Recent NNLO applications with $\rm MCMULE$ [Banerjee, Engel, Signer, Ulrich]

- Bhabba and Møller scattering (one lepton mass) [Banerjee, Engel, Schalch, Signer, Ulrich, 2021; 2022]
- Muon-electron scattering at NNLO (two different lepton masses) [Broggio, Engel, Ferroglia, Mandal, Mastrolia, Rocco, Ronca, Signer, Torres Bobadilla, Ulrich, M.Z., 2023]
 - \rightarrow Complete and fully differential NNLO calculation of a $2\rightarrow 2$ process with two different non-zero masses on the external lines

II. Automated numerical calculation of scattering amplitudes

Feynman integrals in $D = 4 - 2\varepsilon$ dimensions to regularise divergences, e.g. one-loop diagram Γ :

• Numerical tools, such as OPENLOOPS [Buccioni et al], RECOLA [Actis et al], MADLOOP [Hirschi et al], HELAC [Bevilacqua et al] construct the numerator in 4 dimensions \Rightarrow Split numerator

$$\underbrace{\bar{\mathcal{N}}(\bar{q}_{1})}_{D-\dim} = \underbrace{\mathcal{N}(q_{1})}_{4-\dim} + \underbrace{\tilde{\mathcal{N}}(\bar{q}_{1})}_{(D-4)-\dim} \quad \text{with } \mathcal{N}(q_{1}) = \bar{\mathcal{N}}(\bar{q}_{1}) \begin{vmatrix} \bar{q}_{i} \to q_{i}, \\ \bar{\gamma}^{\bar{\mu}} \to \gamma^{\mu}, \\ \bar{g}^{\bar{\mu}\bar{\nu}} \to g^{\mu\nu} \end{vmatrix} \quad \text{(project } D\text{-dim } \to 4\text{-dim})$$

• Requirement for automation: Construct amplitude from process-independent elements Exploit factorisation into universal building blocks: $\mathcal{N}(q_1) = S_1(q_1) \dots S_N(q_1)$

with loop segments
$$S_i(q_1) = \underbrace{\bigvee_{\beta_{i-1}} \dots \bigvee_{k_i}}_{D_i} = \underbrace{\left\{Y_{\sigma}^i + Z_{\nu;\sigma}^i q_1^{\nu}\right\}}_{\text{loop vertex and propagator}} \underbrace{\left[w_i\right]^{\sigma}}_{\text{external subtree}}$$

Automation strategy at one loop in **OPENLOOPS**

Two-loop diagrams

Diagrams consist of loop chains C_i , each depending on a single loop momentum q_i .

Types of diagrams:

- Reducible diagrams: Two factorised loop integrals
 - **Red2:** Two loop chains C_1, C_2 connected by a tree-like bridge P.
 - **Red1:** Two loop chains C_1, C_2 connected by a single quartic vertex \mathcal{V}_4

Extension of one-loop $\operatorname{OpenLoops} \to$ Fully implemented

• Irreducible diagrams: Three loop chains C_1, C_2, C_3 with loop momenta $q_1, q_2, q_3 = -(q_1 + q_2)$ and two connecting vertices $\mathcal{V}_0, \mathcal{V}_1$

Irreducible two-loop diagrams

Irreducible two-loop diagram Γ (1PI on amputation of all external subtrees):

• Numerical calculation in integer dimensions \Rightarrow Split numerator

$$\underbrace{\bar{\mathcal{N}}(\bar{q}_1, \bar{q}_2)}_{D-\mathsf{dim}} = \underbrace{\frac{\mathcal{N}(q_1, q_2)}{4-\mathsf{dim}}}_{4-\mathsf{dim}} + \underbrace{\frac{\tilde{\mathcal{N}}(\bar{q}_1, \bar{q}_2)}{(D-4)-\mathsf{dim}}}_{(D-4)-\mathsf{dim}} \text{ with } \mathcal{N}(q_1, q_2) = \bar{\mathcal{N}}(\bar{q}_1, \bar{q}_2) \begin{vmatrix} \bar{q}_i \to q_i, \\ \bar{q}^{\bar{\mu}} \to \gamma^{\mu}, \\ \bar{g}^{\bar{\mu}\bar{\nu}} \to g^{\mu\nu} \end{vmatrix}$$

• Exploit factorisation into universal building blocks

$$\triangleright \text{ Numerator } \mathcal{N}(\boldsymbol{q}_1, \boldsymbol{q}_2) = \prod_{i=1}^{3} \mathcal{N}^{(i)}(\boldsymbol{q}_i) \prod_{j=0}^{1} \mathcal{V}_j(\boldsymbol{q}_1, \boldsymbol{q}_2) \text{ with } \mathcal{N}^{(i)}(\boldsymbol{q}_i) = S_0^{(i)}(\boldsymbol{q}_i) \cdots S_{N_i-1}^{(i)}(\boldsymbol{q}_i)$$
$$\triangleright \text{ Denominators } \mathcal{D}^{(i)}(\boldsymbol{q}_i) = D_0^{(i)}(\boldsymbol{q}_i) \cdots D_{N_i-1}^{(i)}(\boldsymbol{q}_i) \text{ where } D_a^{(i)}(\boldsymbol{q}_i) = (\boldsymbol{q}_i + p_{ia})^2 - m_{ia}^2$$

(External momenta p_{ia} and masses m_{ia} along *i*-th chain)

III. Automation strategy at two loops

$$\bar{\mathcal{M}}_{2,\Gamma} = \mathcal{N}_{\mu_{1}\cdots\mu_{r}\nu_{1}\cdots\nu_{s}} \int d^{D}q_{1} \int d^{D}q_{2} \frac{q_{1}^{\mu_{1}}\cdots q_{1}^{\mu_{r}}q_{2}^{\nu_{1}}\cdots q_{2}^{\nu_{s}}}{\prod_{i,j} D_{j}^{(i)}(q_{i})} + \int d^{D}q_{1} \int d^{D}q_{2} \frac{\tilde{\mathcal{N}}}{\prod_{i,j} D_{j}^{(i)}(q_{i})} \Big|_{q_{3}=-(q_{1}+q_{2})}$$

Numerical construction of 4-dim tensor coefficients

Completely general recursive algorithm [Pozzorini, Schär, M.Z.] with steps $\mathcal{N}_n(q_1, q_2) = \mathcal{N}_{n-1}(q_1, q_2) \cdot \mathcal{K}_n$ where $\mathcal{K}_n \in \{S_n^{(i)}(q_i), \mathcal{V}_{0,1}(q_1, q_2)\}$

Reduction of tensor integrals \longrightarrow scalar integrals $\mathcal{I}_k \longrightarrow$ master integrals $\mathcal{I}_l^{\mathsf{M}} \rightarrow$ Evaluation of master integrals with external tools Bottle neck of NNLO automation \rightarrow Main focus of our current projects

Restoration of (D - 4)-**dim numerator parts** from **universal two-loop rational terms** [Lang, Pozzorini, Zhang, M.Z.] stemming from the interplay of $\tilde{\mathcal{N}}$ with UV and IR divergences. \rightarrow together with renormalisation procedure via counterterm insertions in lower-loop diagrams

• Sort chains by length: $N_1 \ge N_2 \ge N_3$ Choose order of $\mathcal{V}_0, \mathcal{V}_1$ by vertex type • Dress $\mathcal{N}^{(3)}$ (shortest chain) $(w_1^{(1)})$ $(w_2^{(1)})$ $(w_3^{(1)})$ $(w_3^{(1)})$ $(w_1^{(1)})$ $(w_1^{(1)})$ $(w_1^{($

$$\mathcal{N}_n^{(3)}(\mathbf{q}_3) = \mathcal{N}_{n-1}^{(3)}(\mathbf{q}_3) \cdot S_n^{(3)}(\mathbf{q}_3) \qquad \text{with initial condition } \mathcal{N}_{-1}^{(3)} = \mathbb{1}$$

Partial chains $\mathcal{N}_n^{(3)}$ computed only once for multiple diagrams

Initial building block: Born-colour interference depending on helicity h of all external particles

Example: n = 1• Sort chains by length: $N_1 \ge N_2 \ge N_3$ Choose order of $\mathcal{V}_0, \mathcal{V}_1$ by vertex type q_3 $w_{1}^{(2)}$ • Dress $\mathcal{N}^{(3)}$ (shortest chain) • Dress $\mathcal{U}^{(1)} \propto \mathcal{M}_0^* \mathcal{N}^{(1)}$ (longest chain) $w_{3}^{(1)}$ $ilde{\mathcal{V}}_{_1}$ $\mathcal{U}_{n}^{(1)}(q_{1},\check{h}_{n}^{(1)}) = \sum_{\substack{h_{n}^{(1)} \\ h_{n}^{(1)}}} \mathcal{U}_{n-1}^{(1)}(q_{1},\check{h}_{n-1}^{(1)}) \cdot S_{n}^{(1)}(q_{1},h_{n}^{(1)}) \qquad \text{with} \quad \mathcal{U}_{-1}^{(1)}(h) = 2\left(\sum_{col} \underbrace{\mathcal{M}_{0}^{*}(h)}_{col} C_{2,\Gamma}\right)$ Born

On-the-fly summation of segment helicities $h_n^{(1)}$

ightarrow Constructed object depends on helicities of remaining (undressed) segments of the diagram $\check{h}_n^{(1)}$

Example: n = 2• Sort chains by length: $N_1 \ge N_2 \ge N_3$ Choose order of $\mathcal{V}_0, \mathcal{V}_1$ by vertex type q_3 $w_{1}^{(2)}$ • Dress $\mathcal{N}^{(3)}$ (shortest chain) • Dress $\mathcal{U}^{(1)} \propto \mathcal{M}_0^* \mathcal{N}^{(1)}$ (longest chain) $w_{3}^{(1)}$ ${\mathcal V}_1$ $\mathcal{U}_{n}^{(1)}(q_{1},\check{h}_{n}^{(1)}) = \sum_{\substack{h_{n}^{(1)} \\ h_{n}^{(1)}}} \mathcal{U}_{n-1}^{(1)}(q_{1},\check{h}_{n-1}^{(1)}) \cdot S_{n}^{(1)}(q_{1},h_{n}^{(1)}) \qquad \text{with} \quad \mathcal{U}_{-1}^{(1)}(h) = 2\left(\sum_{col} \underbrace{\mathcal{M}_{0}^{*}(h)}_{col} C_{2,\Gamma}\right)$ Born

On-the-fly summation of segment helicities $h_n^{(1)}$

ightarrow Constructed object depends on helicities of remaining (undressed) segments of the diagram $\check{h}_n^{(1)}$

On-the-fly summation of segment helicities $h_n^{(1)}$

ightarrow Constructed object depends on helicities of remaining (undressed) segments of the diagram $\check{h}_n^{(1)}$

\Rightarrow Most helicity d.o.f already summed at stage with low tensor rank complexity

- Sort chains by length: $N_1 \ge N_2 \ge N_3$ Choose order of $\mathcal{V}_0, \mathcal{V}_1$ by vertex type
- Dress $\mathcal{N}^{(3)}$ (shortest chain)
- Dress ${\cal U}^{(1)} \propto {\cal M}_0^* {\cal N}^{(1)}$ (longest chain)
- ullet Connect \mathcal{V}_1 with $\mathcal{U}^{(1)}$ and $\mathcal{N}^{(3)}$

$$\mathcal{U}_1^{(13)}(q_1, q_3, h^{(2)}) = \sum_{h^{(3)}} \mathcal{U}^{(1)}(q_1, \check{h}_{N_1-1}^{(1)}) \mathcal{N}^{(3)}(q_3, h^{(3)}) \mathcal{V}_1(q_1, q_3)$$

Highest complexity step due to dependence on 3 open indices and 2 loop momenta \rightarrow performed at lowest rank in q_2 and for only a few unsummed helicity configurations

- Sort chains by length: $N_1 \ge N_2 \ge N_3$ Choose order of $\mathcal{V}_0, \mathcal{V}_1$ by vertex type
- Dress $\mathcal{N}^{(3)}$ (shortest chain)
- Dress ${\cal U}^{(1)} \propto {\cal M}_0^* {\cal N}^{(1)}$ (longest chain)
- ullet Connect \mathcal{V}_1 with $\mathcal{U}^{(1)}$ and $\mathcal{N}^{(3)}$
- Connect \mathcal{V}_0 and map $q_3 \rightarrow -(q_1+q_2)$

$$\mathcal{U}_{-1}^{(123)}(q_1, q_2, h^{(2)}) = \mathcal{U}_1^{(13)}(q_1, q_3, h^{(2)}) \mathcal{V}_0(q_1, q_2) \Big|_{q_3 \to -(q_1 + q_2)}$$

- Sort chains by length: $N_1 \ge N_2 \ge N_3$ Choose order of $\mathcal{V}_0, \mathcal{V}_1$ by vertex type
- Dress $\mathcal{N}^{(3)}$ (shortest chain)
- \bullet Dress ${\cal U}^{(1)} \propto {\cal M}_0^* {\cal N}^{(1)}$ (longest chain)
- \bullet Connect \mathcal{V}_1 with $\mathcal{U}^{(1)}$ and $\mathcal{N}^{(3)}$
- Connect \mathcal{V}_0 and map $q_3 \rightarrow -(q_1+q_2)$
- \bullet Connect segments of $\mathcal{N}^{(2)}$

$$\mathcal{U}_{n}^{(123)}(q_{1}, q_{2}, \tilde{h}_{n}^{(2)}) = \sum_{h_{n}^{(2)}} \mathcal{U}_{n-1}^{(123)}(q_{1}, q_{2}, \tilde{h}_{n-1}^{(2)}) S_{n}^{(2)}(q_{2}, h_{n}^{(2)})$$

On-the-fly summation of segment helicities $h_n^{(2)}$

ightarrow Constructed object depends on helicities of remaining (undressed) segments of the diagram $ilde{h}_n^{(2)}$

- Sort chains by length: $N_1 \ge N_2 \ge N_3$ Choose order of $\mathcal{V}_0, \mathcal{V}_1$ by vertex type
- Dress $\mathcal{N}^{(3)}$ (shortest chain)
- \bullet Dress ${\cal U}^{(1)} \propto {\cal M}_0^* {\cal N}^{(1)}$ (longest chain)
- ullet Connect \mathcal{V}_1 with $\mathcal{U}^{(1)}$ and $\mathcal{N}^{(3)}$
- Connect \mathcal{V}_0 and map $q_3 \rightarrow -(q_1+q_2)$
- \bullet Connect segments of $\mathcal{N}^{(2)}$

$$\mathcal{U}_{n}^{(123)}(q_{1}, q_{2}, \tilde{h}_{n}^{(2)}) = \sum_{h_{n}^{(2)}} \mathcal{U}_{n-1}^{(123)}(q_{1}, q_{2}, \tilde{h}_{n-1}^{(2)}) S_{n}^{(2)}(q_{2}, h_{n}^{(2)})$$

On-the-fly summation of segment helicities $h_n^{(2)}$

ightarrow Constructed object depends on helicities of remaining (undressed) segments of the diagram $ilde{h}_n^{(2)}$

- Sort chains by length: $N_1 \ge N_2 \ge N_3$ Choose order of $\mathcal{V}_0, \mathcal{V}_1$ by vertex type
- Dress $\mathcal{N}^{(3)}$ (shortest chain)
- \bullet Dress ${\cal U}^{(1)} \propto {\cal M}_0^* {\cal N}^{(1)}$ (longest chain)
- ullet Connect \mathcal{V}_1 with $\mathcal{U}^{(1)}$ and $\mathcal{N}^{(3)}$
- Connect \mathcal{V}_0 and map $q_3 \rightarrow -(q_1+q_2)$
- \bullet Connect segments of $\mathcal{N}^{(2)}$

$$\mathcal{U}_{n}^{(123)}(q_{1}, q_{2}, \tilde{h}_{n}^{(2)}) = \sum_{h_{n}^{(2)}} \mathcal{U}_{n-1}^{(123)}(q_{1}, q_{2}, \tilde{h}_{n-1}^{(2)}) S_{n}^{(2)}(q_{2}, h_{n}^{(2)})$$

On-the-fly summation of segment helicities $h_n^{(2)}$

ightarrow Constructed object depends on helicities of remaining (undressed) segments of the diagram $ilde{h}_n^{(2)}$

\Rightarrow Lowest complexity in helicities for steps with highest rank in loop momenta

- Sort chains by length: $N_1 \ge N_2 \ge N_3$ Choose order of $\mathcal{V}_0, \mathcal{V}_1$ by vertex type
- Dress $\mathcal{N}^{(3)}$ (shortest chain)
- Dress ${\cal U}^{(1)} \propto {\cal M}_0^* {\cal N}^{(1)}$ (longest chain)
- \bullet Connect \mathcal{V}_1 with $\mathcal{U}^{(1)}$ and $\mathcal{N}^{(3)}$
- Connect \mathcal{V}_0 and map $q_3 \rightarrow -(q_1+q_2)$
- \bullet Connect segments of $\mathcal{N}^{(2)}$

Highly efficient and completely general algorithm for two-loop tensor coefficients Fully implemented for QED and QCD corrections to the SM

Two-loop rational terms

Renormalised *D*-dim amplitudes from amplitudes with 4-dim numerator [Pozzorini, Zhang, M.Z.]

Consider UV poles:

- Divergence from subdiagram γ and remaining global one subtracted by usual UV counterterm $\delta Z_{1,\gamma}, \delta Z_{2,\Gamma}$. Additional UV counterterm $\delta \tilde{Z}_{1,\gamma} \propto \frac{\tilde{q_1}^2}{\varepsilon}$ for subdiagrams with mass dimension 2.
- $\delta \mathcal{R}_{2,\Gamma}$ is a two-loop rational term stemming from the interplay of \tilde{N} with poles \Rightarrow Finite set of process-independent rational terms for UV divergent vertex functions

Status of two-loop rational terms

Renormalised *D*-dim amplitudes can be computed from amplitudes with 4-dim numerators and a **finite set of universal UV and rational counterterms** inserted lower-loop amplitudes

$$\mathbf{R}\,\bar{\mathcal{M}}_{2,\Gamma} = \mathcal{M}_{2,\Gamma} + \sum_{\gamma} \left(\delta Z_{1,\gamma} + \delta \tilde{Z}_{1,\gamma} + \delta \mathcal{R}_{1,\gamma} \right) \cdot \mathcal{M}_{1,\Gamma/\gamma} + \left(\delta Z_{2,\Gamma} + \delta \mathcal{R}_{2,\Gamma} \right)$$

Rational terms of UV origin

- General method for the computation of rational counterterms of UV origin from simple tadpole integrals in any renormalisable model [Pozzorini, Zhang, M.Z.,2020]
- Complete renormalisation scheme dependence [Lang, Pozzorini, Zhang, M.Z.,2020]
- Rational Terms for Spontaneously Broken Theories [Lang, Pozzorini, Zhang, M.Z., 2021]
- Full set of two-loop rational terms computed for
 - QED with full dependence on the gauge parameter [Pozzorini, Zhang, M.Z.,2020]
 - SU(N) and U(1) in any renormalisation scheme [Lang, Pozzorini, Zhang, M.Z.,2020]
 - QED and QCD corrections to the full SM [Lang, Pozzorini, Zhang, M.Z.,2021]

Rational terms of IR origin (ongoing projects): Treat IR subtracted full amplitude through modification of rational terms $\left[\delta \mathcal{R}_{1,\gamma} \text{ at } \mathcal{O}(\varepsilon) \rightarrow \delta \mathcal{R}_{2,\gamma} \text{ at } \mathcal{O}(1) \right]$ or of Catani-Seymour I-operator \rightarrow to be published soon for QED [Pozzorini, Zhang]

Sructure of two-loop rational terms of UV origin

i

Example: Two-point function of a fermion f in SU(N) or U(1) model with Casimirs $C_{\rm F}, C_{\rm A}$ and fundamental trace $T_{\rm F}$ and dimension N in Feynman gauge ($\lambda = 1, Z_{\rm gp} = \frac{Z_A}{Z_V}$)

$$\begin{array}{rcl} & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & &$$

- Interaction of $\tilde{\mathcal{N}}$ with $\frac{1}{\epsilon^2}$ poles leads to rational terms $\propto \frac{1}{\epsilon}$
- Rational terms depend trivially on the scale factor t^{ε} of the renormalisation scheme
- At two loops: Non-trivial dependence on the renormalisation scheme can be fully expressed in terms of the one-loop UV counterterms $Z_{1,\chi} = \left(\frac{\alpha t^{\varepsilon}}{4\pi}\right) \delta \hat{Z}_{1,\chi}$

Two-loop renormalisation and UV rational terms

- Poles numerically implemented as parameter $\Delta = \frac{1}{\varepsilon}$ with default $\Delta = 0 \longrightarrow$ Finite part
- Pole parts computed and pole cancellation checked through variation of $\Delta = 0, 1, -1, 2, -2$.

Two-loop renormalisation and UV rational terms

- Generation and combination of all ingredients automated in **OPENLOOPS** framework
- Implemented for QED and QCD counterterms (currently MS, but easily extendable)

Validation of two-loop renormalisation and UV rational terms

in collaboration with N. Schär

Validation requires full amplitude calculation and hence tensor integrals

- Compute off-shell amplitudes to avoid IR divergences
- In-house library for simple tensor integrals (currently 2 independent external momenta, massless)
- Validation of implementation + first application of two-loop rational terms in two steps:
 - 1. Check cancellation of UV poles \rightarrow non-trivial since $\delta \mathcal{R}_{2,\Gamma}$ has $\frac{1}{\varepsilon}$ pole
 - \rightarrow Successfully completed for several processes
 - 2. Computation of finite parts of amplitudes (in progress)
 - \rightarrow Computation of off-shell two-loop QCD vertex functions with two-loop $\operatorname{OPENLOOPS}$
 - \rightarrow Comparison against literature [Gracey]

Two-loop tensor integral reduction

In-house tool for validation purposes and simple processes in collaboration with N. Schär

• Covariant decomposition of final result, e.g.

$$I^{\mu;\nu} = \int \mathrm{d}\bar{q}_1 \int \mathrm{d}\bar{q}_2 \frac{q_1^{\mu} q_2^{\nu}}{\mathcal{D}(q_1, q_2, \{k_i\})} = A \, g^{\mu\nu} + \sum_i B_{ij} \, k_i^{\mu} k_j^{\nu}$$

- Define projector for each tensor structure, here $P_a^{\mu\nu} \in \{g_{\mu\nu}, k_i^{\mu}k_j^{\nu}\}$ \Rightarrow System of equations from $P_a^{\mu\nu}$ applied to both sides of $I_{\mu;\nu}$ \Rightarrow Solve for A, B_{ij}, \dots (expressed in terms of scalar integrals)
- FIRE [Smirnov, Chukharev] for IBP reduction [Chetyrkin, Tkachov; Laporta] of scalar to Master integrals
- Perform ε -expansion and store expressions in FORTRAN library
- Analytical expressions for Master integrals [Birthwright, Glover, Marquard] implemented or computed with FIESTA [Smirnov]

Largely automated and easy to extend for more topologies (more legs, masses) In practice limited due to large systems of equations in matrix inversion and IBP reduction.

 \rightarrow More efficient method and tool for higher-point topologies and higher tensor ranks being developed \rightarrow current project with Fabian Lange

V. Summary and Outlook

Challenges in automation of numerical NNLO calculations

- \triangleright Real-virtual part \rightarrow OPENLOOPS offers excellent numerical stability, efficiency and flexibility
- ▷ Two-loop amplitudes

Numerical construction of 4-dim tensor coefficients

- Completely general recursive algorithm
- Highly efficient and fully implemented for QED and QCD corrections to SM

Reduction of tensor integrals to master integrals

- ullet In-house tool for simple topologies \rightarrow validation of renormalisation and rational terms
- New algorithm and tool for higher-point and higher-rank integrals under development

Renormalisation and restoration of (D-4)-dim numerator parts

- Rational terms of UV origin: General method proven
 - \circ Computed for QED and QCD corrections to SM
- UV and rational counterterms **implemented in** OPENLOOPS **framework** for QED and QCD corrections to SM
- Rational terms of IR origin: Ongoing project

Backup

Reducible two-loop diagrams

Reducible diagram Γ factorises into one-loop diagrams and a tree-like bridge P (or quartic vertex)

Feynman rule of loop vertex and propagator external subtree with helicity configuration $h_a^{(i)}$

- Cut-open both loops and dress first one
- Close and integrate first loop, attach bridge
- Use first loop + bridge as "subtree" for second loop
- \Rightarrow Extension of the tree and one-loop algorithm

Fully implemented for QED and QCD corrections to the SM

Timings for two-loop tensor coefficients

 $2 \rightarrow 2$ process: 10 - 300 ms/psp $2 \rightarrow 3 \text{ process: } 65 - 9200 \text{ ms/psp}$ (on a laptop)

Runtime \propto number of diagrams time/psp/diagram $\sim 150 \mu s$

Constant ratios between virtualvirtual (VV) and real-virtual (RV) with and without 1-loop integrals • tensor coefficients: $\frac{t_{\rm VV}}{t_{\rm RV}} \sim 9$ • full RV: $\frac{t_{\rm VV}}{t_{\rm RV}} \sim 4$

Strong CPU performance, comparable to real-virtual corrections in OPENLOOPS

Processes considered in performance tests

corrections	process type	massless fermions	massive fermions	process
QED	$2 \rightarrow 2$	е	_	$e^+e^- \rightarrow e^+e^-$
	$2 \rightarrow 3$	е		$e^+e^- \rightarrow e^+e^-\gamma$
QCD	$2 \rightarrow 2$	u	_	$gg \to u\bar{u}$
		u,d	—	$d\bar{d} ightarrow u\bar{u}$
		u	—	$gg \rightarrow gg$
		u	t	$u\bar{u} \to t\bar{t}g$
		u	t	$gg \to t\bar{t}$
		u	t	$gg \to t\bar{t}g$
	$2 \rightarrow 3$	u,d	_	$d\bar{d} \rightarrow u\bar{u}g$
		u	—	$gg \rightarrow ggg$
		u,d	—	$u\bar{d} \to W^+ gg$
		u,d	—	$u\bar{u} \to W^+W^-g$
		u	t	$u\bar{u} \to t\bar{t}H$
		u	t	$gg \to t\bar{t}H$

Memory usage of the algorithm for two-loop tensor coefficients

	virtual–virtual	real–virtual [MB]		
hard process	segment-by-segment	diagram-by-diagram	coefficients	full
$e^+e^- \to e^+e^-$	18	8	6	23
$e^+e^- \rightarrow e^+e^-\gamma$	154	25	22	54
$gg \rightarrow u\bar{u}$	75	31	10	26
$gg \to t\bar{t}$	94	35	15	34
$gg \to t\bar{t}g$	2000	441	152	213
$u\bar{d} \to W^+ gg$	563	143	54	90
$u\bar{u} \to W^+W^-g$	264	67	36	67
$u\bar{u} \to t\bar{t}H$	82	28	14	40
$gg \to t\bar{t}H$	604	145	50	90
$u\bar{u} \to t\bar{t}g$	323	83	41	74
$gg \rightarrow gg$	271	94	41	55
$d\bar{d} \to u\bar{u}$	18	10	9	20
$d\bar{d} \to u\bar{u}g$	288	85	39	68
$gg \rightarrow ggg$	6299	1597	623	683

Numerical stability of two-loop tensor coefficients

Pseudo-tree test

- Cut-open diagram at two propagators
- Saturate indices with random wavefunctions e_1, \ldots, e_4
- Evaluate integrand constructed with new two-loop algorithm at fixed values for q_1, q_2 $\Rightarrow \widehat{\mathcal{W}}_{02,\Gamma}^{(2L)} = \frac{U(q_1,q_2)}{\mathcal{D}(q_1,q_2)} \Rightarrow \widehat{\mathcal{W}}_{02}^{(2L)} = \sum_{\Gamma} \widehat{\mathcal{W}}_{02,\Gamma}^{(2L)}$

• Compute the same object with the OPENLOOPS tree-level algorithm for fixed $q_1, q_2 \Rightarrow \widehat{W}_{02}^{(t)}$ Compute relative numerical uncertainty in double (DP) and quadruple (QP) precision

$$\mathcal{A}^{(t)} := \log_{10} \left(\frac{|\widehat{\mathcal{W}}_{02}^{(t)} - \widehat{\mathcal{W}}_{02}^{(2L)}|}{\mathsf{Min}(|\widehat{\mathcal{W}}_{02}^{(t)}|, |\widehat{\mathcal{W}}_{02}^{(2L)}|)} \right)$$

 \Rightarrow Implementation validated for wide range of processes (10⁵ uniform random points)

Typical accuracy around 10^{-15} in DP and 10^{-30} in QP, and always much better than 10^{-17} in QP \Rightarrow **QP calculation as benchmark for numerical accuracy of DP calculation**

Numerical stability of two-loop tensor coefficients

Numerical instability of double (DP) wrt quad precision (QP) calculation:

$$\mathcal{A}_{\mathrm{DP}} \,=\, \log_{10} \left(\frac{|\widehat{\mathcal{W}}_{02}^{(\mathrm{2L},\mathrm{DP})} - \widehat{\mathcal{W}}_{02}^{(\mathrm{2L},\mathrm{QP})}|}{\mathsf{Min}(|\widehat{\mathcal{W}}_{02}^{(\mathrm{2L},\mathrm{DP})}|, |\widehat{\mathcal{W}}_{02}^{(\mathrm{2L},\mathrm{QP})}|)} \right)$$

Fraction of points with $A_{DP} > A_{min}$ as a function of A_{min} for 10^5 uniform random points

Excellent numerical stability

⇒ Important for full calculation (tensor integral reduction will be main source of instabilities)

One-loop rational terms

Amputated one-loop diagram γ (1Pl)

$$\bar{\mathcal{M}}_{1,\gamma} = \underbrace{C_{1,\gamma}}_{\text{colour factor}} \int \mathrm{d}\bar{q}_1 \frac{\mathcal{N}(q_1) + \tilde{\mathcal{N}}(\bar{q}_1)}{\mathcal{D}(\bar{q}_1)} = \underbrace{\mathcal{N}_{0}(\bar{q}_1)}_{D_1} \Rightarrow \delta \mathcal{R}_{1,\gamma} = C_{1,\gamma} \int \mathrm{d}\bar{q}_1 \frac{\tilde{\mathcal{N}}(\bar{q}_1)}{\mathcal{D}(\bar{q}_1)}$$

The ε -dim numerator parts $\tilde{\mathcal{N}}(\bar{q}_1) = \bar{\mathcal{N}}(\bar{q}_1) - \mathcal{N}(q_1)$ contribute only via interaction with $\frac{1}{\varepsilon}$ UV poles \Rightarrow Can be restored through rational counterterm $\delta \mathcal{R}_{1,\gamma}$ [Ossola, Papadopoulos, Pittau]

$$\Rightarrow \underbrace{\mathbf{R}\,\overline{\mathcal{M}}_{1,\gamma}}_{D-\text{dim, renormalised}} = \underbrace{\mathcal{M}_{1,\gamma}}_{4-\text{dim numerator}} + \underbrace{\delta Z_{1,\gamma} + \delta \mathcal{R}_{1,\gamma}}_{\text{UV and rational counterterm}}$$

Generic one-loop diagram Γ factorises into 1PI subdiagram γ and external subtrees w_i (4-dim):

$$\bar{\mathcal{M}}_{1,\Gamma} = \underbrace{\left[\bar{\mathcal{M}}_{1,\gamma}\right]^{\sigma_1...\sigma_N}}_{w_1} \underbrace{\prod_{i=1}^{w_1} [w_i]_{\sigma_i}}_{i=1} \Rightarrow \begin{bmatrix} \bar{\mathcal{M}}_{1,\Gamma} - \mathcal{M}_{1,\Gamma} + \left(\delta Z_{1,\gamma} + \delta \mathcal{R}_{1,\gamma}\right) \\ \underbrace{\prod_{i=1}^{N} w_i}_{\text{tree diagram}} \end{bmatrix}$$

Finite set of process-independent rational terms in renormalisable models computed from UV divergent vertex functions

Explicit recursion steps for tensor coefficients

Triple vertex loop segment:

$$\left[S_a^{(i)}(q_i, h_a^{(i)}) \right]_{\beta_{a-1}^{(i)}}^{\beta_a^{(i)}} = \underbrace{w_a^{(i)}}_{\beta_{a-1}^{(i)}} = \left\{ \left[Y_{ia}^{\sigma} \right]_{\beta_{a-1}^{(i)}}^{\beta_a^{(i)}} + \left[Z_{ia,\nu}^{\sigma} \right]_{\beta_{a-1}^{(i)}}^{\beta_a^{(i)}} q_i^{\nu} \right\} w_{a\sigma}^{(i)}(k_{ia}, h_a^{(i)})$$

Quartic vertex segments:

$$\begin{bmatrix} S_a^{(i)}(q_i, h_a^{(i)}) \end{bmatrix}_{\beta_{a-1}^{(i)}}^{\beta_a^{(i)}} = \underbrace{w_{a_1}^{(i)}}_{\beta_{a-1}^{(i)}} \underbrace{w_{a_2}^{(i)}}_{\beta_{a-1}^{(i)}} = \begin{bmatrix} Y_{ia}^{\sigma_1 \sigma_2} \end{bmatrix}_{\beta_a^{(i)}}^{\beta_a^{(i)}} w_{a_1 \sigma_1}^{(i)}(k_{ia_1}, h_{a_1}^{(i)}) w_{a_2 \sigma_2}^{(i)}(k_{ia_2}, h_{a_2}^{(i)})$$
with $h_a^{(i)} = h_{a_1}^{(i)} + h_{a_2}^{(i)}$ and $k_{ia} = k_{ia_1} + k_{ia_2}$.

Dressing step for a segment with a triple vertex:

$$\begin{split} \left[\mathcal{N}_{n;\,\mu_{1}...\mu_{r}}^{(1)}(\hat{h}_{n}^{(1)}) \right]_{\beta_{0}^{(1)}}^{\beta_{n}^{(1)}} &= \left\{ \left[\mathcal{N}_{n-1;\,\mu_{1}...\mu_{r}}^{(1)}(\hat{h}_{n-1}^{(1)}) \right]_{\beta_{0}^{(1)}}^{\beta_{n-1}^{(1)}} \left[Y_{1n}^{\sigma} \right]_{\beta_{n-1}^{(1)}}^{\beta_{n}^{(1)}} \right. \\ &+ \left[\mathcal{N}_{n-1;\,\mu_{2}...\mu_{r}}^{(1)}(\hat{h}_{n-1}^{(1)}) \right]_{\beta_{0}^{(1)}}^{\beta_{n-1}^{(1)}} \left[Z_{1n,\mu_{1}}^{\sigma} \right]_{\beta_{n-1}^{(1)}}^{\beta_{n}^{(1)}} \right\} w_{n\sigma}^{(1)}(k_{n},h_{n}^{(1)}). \end{split}$$

OPENLOOPS features

OPENLOOPS provides all contributions of a given power in α (electroweak) and α_s (strong) to W in a fully automated way, e.g. NLO EW corrections of O(α²_Sα¹) for qq̄ → qq̄:

- Different **EW** schemes implemented: $\alpha(0)$ -scheme, G_{μ} -scheme, $\alpha(M_Z)$ -scheme
- Consistent treatment of resonances with **complex mass scheme** at 1-loop [Denner, Dittmaier] \rightarrow complex mass $\mu_p^2 = M_p^2 - i M_p \Gamma_p$ from real physical mass M_p and width Γ_p as input
- Different Renormalisation schemes implemented, e.g. on-shell or \overline{MS} for quark masses; different flavour schemes for α_S
- Colour and charge correlators; Spin and Spin-colour correlators
- Catani-Seymour I-operator
- Selection of helicity states \rightarrow polarised initial or final states

• • • •

 \Rightarrow Ingredients for a wide range of applications available

The structure of **OPENLOOPS**

- OPENLOOPS program (public): User interfaces and process-independent routines.
- Process generator (not public): Perform analytical steps (e.g. colour factors) and generate process-dependent code for numerical calculation → stored in process libraries
- Process libraries (public): Collection of partonic channels for a process class, e.g. pp → jj, automatically downloaded by the user.
- Third party tools for integral evaluation (included): COLLIER [Denner, Dittmaier, Hofer], ONELOOP [van Hameren]

Same structure at two loops. Minimal extension of widely-used interfaces