Numerical threshold subtraction in physical amplitudes

Matilde Vicini
ETH Zurich

Loops \& Legs 2024 @ Wittenberg
18th April 2024

N_{f} virtual corrections to vector

boson production at NNLO

Matilde Vicini
ETH Zurich

Loops \& Legs 2024 @ Wittenberg
18th April 2024

Virtual corrections to vector boson production

1. Why numerical methods are needed at NNLO
2. IR/UV singularities
3. Threshold singularities
4. Results
5. Conclusion

Phenomenological importance of vector boson production

Vector boson production: irreducible backgrounds to many new physics searches.

Recent experimental measurements for vector-boson production that use the full Run-2 data are available.

Theoretical computation for colour singlet production in NNLO pQCD up to two bosons is now standard.

The production of three vector bosons remains a challenge in analytical computations.

- $q \bar{q} \rightarrow \gamma \gamma \gamma$ recently calculated analytically at NNLO
2010.04681, Kallweit, Sotnikov, Wiesemann
2010.15834, Abreu, Page, Pascual, Sotnikov
2012.13553, Chawdhry, Czakon, Mitov, Poncelet
…
five-point two-loop one-mass scattering
2306.15431, Abreu, Chicherin, Ita, Page, Sotnikov, Tschernow, Zoia
Bee more details on status in G. De Laurentis' talk

Measurements of $\mathrm{pp} \rightarrow \mathrm{ZZ}$ production cross-sections and constraints on anomalous triple gauge couplings at $\sqrt{s}=13 \mathrm{TeV}$, CMS collaboration (2020)

Why numerical methods are needed at NNLO

B The analytical computation of the two-loop integral is challenging

3 external massive vector boson

Bigh multiplicity in the external legs + many kinematical scales
It is worthwhile to attempt the computation with methods different from the analytical ones!

In this talk．．．

3 external massive vector boson

We tackled its first ingredient numerically，i．e．the N_{f} contribution：

（30 integrate numerically，we need to

$$
\begin{array}{lc}
\text { 米 } & \text { remove infrared (IR) singularities } \\
\text { 米 } & \text { remove ultraviolet (UV) singularities } \\
\text { 米 } & \text { remove threshold singularities }
\end{array}
$$

before integrating with Monte－Carlo methods

In this talk...

3 external massive vector boson

We tackled its first ingredient numerically, i.e. the N_{f} contribution:

(To integrate numerically, we need to㭗 remove infrared (IR) singularities
粦 remove ultraviolet (UV) singularities remove threshold singularities

Strategy:

we will subtract local counterterms which we eventually add back integrated
before integrating with Monte-Carlo methods

IR divergences

has power-like IR singularities

We modify the integrand, performing an initial tensor reduction on the loop momentum l. This leads to

Which now has same IR divergences as the one-loop amplitude.
Choice of an alternative integrand as starting point for local subtraction of IR singularities.

IR divergences

has power-like IR singularities

We modify the integrand, performing an initial tensor reduction on the loop momentum l. This leads to

$+\ldots)(k) \frac{1}{l^{2}(l+k)^{2}}$
Which now has same IR divergences as the one-loop amplitude.

Choice of an alternative integrand as starting point for local subtraction of IR singularities.

IR divergences

has power-like IR singularities
We modify the integrand, performing an initial tensor reduction on the loop momentum l. This leads to

Which now has same IR divergences as the one-loop amplitude.
Choice of an alternative integrand as starting point for local subtraction of IR singularities.

The IR counterterm

The IR form-factor counterterm expresses at the integrand level the integrated Catani-Seymour factorisation of IR divergences:

$$
M^{(1)}-I^{(1)} M^{(0)}=\text { finite }
$$

To get rid of UV divergences at the local level, we also introduce UV counterterms, one for each UV singular diagram, e.g.:

Subtracted amplitude in $\mathrm{D}=4$

For the $\left(2, N_{f}\right)$ case:

$$
\mathscr{M}_{\text {finite }}^{(2, N)}(k, l):=\left[\frac{1}{l^{2}(l+k)^{2}}-\frac{1}{\left(l^{2}-M_{U V}^{2}\right)^{2}}\right] \mathscr{M}_{\text {finite }}^{(1)}(k)
$$

$\mathscr{M}_{\text {finite }}$ integration numerically in $\mathrm{D}=4$ in the physical region cannot happen unless we have a way of extracting the discontinuities arising from threshold singularities.

In other words, what do we do about the ie prescription in a numerical program?

Subtracted amplitude in $\mathrm{D}=4$

$\mathscr{M}_{\text {finite }}$ integration numerically in $\mathrm{D}=4$ in the physical region cannot happen unless we have a way of extracting its discontinuities arising from threshold singularities.

Several possibilities:

Numerical contour deformation

Feynman parameters
0004013, Binoth, Heinrich
0703282, Anastasiou, Beerli, Daleo
0703273, Lazopoulos, Melnikov, Petriello
1011.5493, Carter, Heinrich
1703.09692, Borowka, Heinrich, Jahn, Jones, Kerner, Schlenk,.
2302.08955, Borinsky, Munch, Tellander ...

Loop Momentum space

9804454, Soper

0812.3686, Gong, Nagy, Soper
1010.4187, Becker, Reuschle, Weinzierl
1111.1733, Becker, Goetz, Reuschle, Schwan, Weinzierl
1211.0509, Becker, Weinzierl
1510.00187, Buchta, Chachamis, Draggiotis, Rodrigo
1912.09291, Capatti, Hirschi, Kermanschah, Pelloni, Ruijl
…

Subtracted amplitude in $\mathrm{D}=4$

$\mathscr{M}_{\text {finite }}$ integration numerically in $\mathrm{D}=4$ in the physical region cannot happen unless we have a way of extracting its discontinuities arising from threshold singularities.

Several possibilities:

Numerical contour deformation

Feynman parameters
0004013, Binoth, Heinrich
0703282, Anastasiou, Beerli, Daleo
0703273, Lazopoulos, Melnikov, Petriello
1011.5493, Carter, Heinrich
1703.09692, Borowka, Heinrich, Jahn, Jones, Kerner, Schlenk,.
2302.08955, Borinsky, Munch, Tellander ...

Loop Momentum space
9804454, Soper
0812.3686, Gong, Nagy, Soper
1010.4187, Becker, Reuschle, Weinzierl
1111.1733, Becker, Goetz, Reuschle, Schwan, Weinzierl
1211.0509, Becker, Weinzierl
1510.00187, Buchta, Chachamis, Draggiotis, Rodrigo
1912.09291, Capatti, Hirschi, Kermanschah, Pelloni, Ruijl
…

What we use:

Subtracted amplitude in $\mathrm{D}=4$

$\mathscr{M}_{\text {finite }}$ integration numerically in $\mathrm{D}=4$ in the physical region cannot happen unless we have a way of extracting its discontinuities arising from threshold singularities.

Several possibilities:

Numerical contour deformation

Feynman parameters
0004013, Binoth, Heinrich
0703282, Anastasiou, Beerli, Daleo
0703273, Lazopoulos, Melnikov, Petriello
1011.5493, Carter, Heinrich
1703.09692, Borowka, Heinrich, Jahn, Jones, Kerner, Schlenk,.
2302.08955, Borinsky, Munch, Tellander …

Loop Momentum space

9804454, Soper

0812.3686, Gong, Nagy, Soper
1010.4187, Becker, Reuschle, Weinzierl
1111.1733, Becker, Goetz, Reuschle, Schwan, Weinzierl
1211.0509, Becker, Weinzierl
1510.00187, Buchta, Chachamis, Draggiotis, Rodrigo
1912.09291, Capatti, Hirschi, Kermanschah, Pelloni, Ruijl
...

What we use:

Numerical threshold subtraction

```
0912.3495, Kilian, Kleinschmidt
```

2110.06869, Kermanschah

To remove threshold singularities in momentum space:

To remove threshold singularities in momentum space:
Bexpose threshold singularities

To remove threshold singularities in momentum space:
Bexpose threshold singularities integrate over $d k^{0}$

To remove threshold singularities in momentum space:
Bexpose threshold singularities

Bregulate threshold singularities

To remove threshold singularities in momentum space:
Bexpose threshold singularities
integrate over $d k^{0}$
Bregulate threshold singularities

Exposing threshold singularities in loop momentum space

Example of threshold singularity:

corresponds to physical subprocesses

discontinuity of

when cut propagators go on-shell
To expose all the threshold singularities and their overlaps in loop momentum space:

$$
\begin{aligned}
& \int d k^{4} \mathscr{M}_{\text {finite }}(k)=\int d^{3} \vec{k} f^{3 \mathrm{~d}}\left(\mathscr{M}_{\text {finite }}(k)\right) \sim \int d^{3} \vec{k}\left\{\frac{1}{E_{1}+E_{3}-p_{1}^{0}-p_{2}^{0}} \frac{1}{E_{0}+E_{1}-p_{1}^{0}} \cdots+\cdots\right\} \begin{array}{c}
E_{i}: \text { on-shell } \\
\text { energy of } \\
\text { propagator } i
\end{array} \\
& \int d k^{0} \begin{array}{c}
\text { via residue } \\
\text { theorem }
\end{array}
\end{aligned}
$$

0804.3170, Catani, Gleisberg, Krauss, Rodrigo, Winter 1904.08389, Aguilera-Verdugo, Driencourt-Mangin, Plenter, Ramírez-Uribe, Rodrigo, Sborlini et al.,
1906.06138, Capatti, Hirschi, Kermanschah, Ruijl
2009.05509, Capatti, Hirschi, Kermanschah, Pelloni, Ruijl

Numerical threshold subtraction

Setting each denominator $=0$ identifies a
bounded region in \vec{k} space

$$
\int d^{3} \vec{k} f^{3 \mathrm{~d}}(\mathscr{M}(k)) \sim \int d^{3} \vec{k}\left\{\frac{1}{E_{1}+E_{3}-p_{1}^{0}-p_{2}^{0}} \frac{1}{E_{0}+E_{1}-p_{1}^{0}} \cdots+\cdots\right\}
$$

Numerical threshold subtraction

Setting each denominator $=0$ identifies a
bounded region in \vec{k} space

$$
\int d^{3} \vec{k} f^{3 \mathrm{~d}}(\mathscr{M}(k)) \sim \int d^{3} \vec{k}\left\{\frac{1}{E_{1}+E_{3}-p_{1}^{0}-p_{2}^{0}} \frac{1}{E_{0}+E_{1}-p_{1}^{0}} \cdots+\cdots\right\}
$$

Numerical threshold subtraction

Setting each denominator $=0$ identifies a bounded region in \vec{k} space
e.g.:

$$
\int d^{3} \vec{k} f^{3 \mathrm{~d}}(\mathscr{M}(k)) \sim \int d^{3} \vec{k}\left\{\frac{1}{E_{1}+E_{3}-p_{1}^{0}-p_{2}^{0}} \frac{1}{E_{0}+E_{1}-p_{1}^{0}} \cdots+\cdots\right\}
$$

Numerical threshold subtraction

Setting each denominator $=0$ identifies a bounded region in \vec{k} space
e.g.:

$$
\int d^{3} \vec{k} f^{3 \mathrm{~d}}(\mathscr{M}(k)) \sim \int d^{3} \vec{k}\left\{\frac{1}{E_{1}+E_{3}-p_{1}^{0}-p_{2}^{0}} \frac{1}{E_{0}+E_{1}-p_{1}^{0}} \cdots+\cdots\right\}
$$

Numerical threshold subtraction

Setting each denominator $=0$ identifies a bounded region in \vec{k} space
e.g.:

$$
\int d^{3} \vec{k} f^{3 \mathrm{~d}}(\mathscr{M}(k)) \sim \int d^{3} \vec{k}\left\{\frac{1}{E_{1}+E_{3}-p_{1}^{0}-p_{2}^{0}} \frac{1}{E_{0}+E_{1}-p_{1}^{0}} \cdots+\cdots\right\}
$$

2110.06869, Kermanschah
around the threshold singularity at $\vec{k}=\vec{k}^{*}$ the integrand behaves as:

$$
\frac{\operatorname{Res}_{\vec{k}=\vec{k}^{*}}\left[f^{3 d}(\mathscr{M})\right]}{|\vec{k}|-k^{*} \pm i \varepsilon} \chi\left(\vec{k}, \vec{k}^{*}\right),
$$

Numerical threshold subtraction

Setting each denominator $=0$ identifies a bounded region in \vec{k} space
e.g.:

$$
\int d^{3} \vec{k} f^{3 \mathrm{~d}}(\mathscr{M}(k)) \sim \int d^{3} \vec{k}\left\{\frac{1}{E_{1}+E_{3}-p_{1}^{0}-p_{2}^{0}} \frac{1}{E_{0}+E_{1}-p_{1}^{0}} \cdots+\cdots\right\}
$$

2110.06869, Kermanschah
around the threshold singularity at $\vec{k}=\vec{k}^{*}$ the integrand behaves as:
$\frac{\boldsymbol{\operatorname { R e s }}_{\vec{k}=\vec{k}^{*}}\left[f^{3 d}(\mathscr{M})\right]}{|\vec{k}|-k^{*} \pm i \varepsilon} \chi\left(\vec{k}, \vec{k}^{*}\right), \quad \chi:$ suppression function,

Numerical threshold subtraction

Setting each denominator $=0$ identifies a bounded region in \vec{k} space
e.g.:

$$
\int d^{3} \vec{k} f^{3 \mathrm{~d}}(\mathscr{M}(k)) \sim \int d^{3} \vec{k}\left\{\frac{1}{E_{1}+E_{3}-p_{1}^{0}-p_{2}^{0}} \frac{1}{E_{0}+E_{1}-p_{1}^{0}} \cdots+\cdots\right\}
$$

2110.06869, Kermanschah
around the threshold singularity at $\vec{k}=\vec{k}^{*}$ the integrand behaves as:

Numerical threshold subtraction

Setting each denominator $=0$ identifies a bounded region in \vec{k} space

> e.g.:

$$
\int d^{3} \vec{k} f^{3 \mathrm{~d}}(\mathscr{M}(k)) \sim \int d^{3} \vec{k}\left\{\frac{1}{E_{1}+E_{3}-p_{1}^{0}-p_{2}^{0}} \frac{1}{E_{0}+E_{1}-p_{1}^{0}} \cdots+\cdots\right\}
$$

$$
\begin{gathered}
E_{1}+E_{3}-p_{1}^{0}-p_{2}^{0}=0 \\
\text { for some } \vec{k}=\vec{k}^{*} \\
\text { if }\left(p_{1}+p_{2}\right)^{2}>0,\left(p_{1}^{0}+p_{2}^{0}\right)>0 \\
\longleftrightarrow
\end{gathered}
$$

2110.06869, Kermanschah
around the threshold singularity at $\vec{k}=\vec{k}^{*}$ the integrand behaves as:

[^0]
Numerical threshold subtraction

Setting each denominator $=0$ identifies a bounded region in \vec{k} space
e.g.:

$$
\int d^{3} \vec{k} f^{3 \mathrm{~d}}(\mathscr{M}(k)) \sim \int d^{3} \vec{k}\left\{\frac{1}{E_{1}+E_{3}-p_{1}^{0}-p_{2}^{0}} \frac{1}{E_{0}+E_{1}-p_{1}^{0}} \cdots+\cdots\right\}
$$

$E_{1}+E_{3}-p_{1}^{0}-p_{2}^{0}=0$
for some $\vec{k}=\vec{k}^{*}$
if $\left(p_{1}+p_{2}\right)^{2}>0,\left(p_{1}^{0}+p_{2}^{0}\right)>0$

2110.06869, Kermanschah
around the threshold singularity at $\vec{k}=\vec{k}^{*}$ the integrand behaves as:
(use this to build a local threshold counterterm $C T_{*}$, so that the subtracted integrand becomes locally finite at the threshold:

$$
\int d^{3} \vec{k} f^{3 \mathrm{~d}}(\mathscr{M}(k))=\int d^{3} \vec{k}\left\{f^{3 \mathrm{~d}}(\mathscr{M}(k))-\frac{\boldsymbol{\operatorname { R e s }}_{\vec{k}=\vec{k}^{*}}\left[f^{3 d}(\mathscr{M})\right]}{|\vec{k}|-k^{*} \pm i \varepsilon} \chi\left(\vec{k}, \vec{k}^{*}\right)\right\}+\int C T_{*}
$$

Numerical threshold subtraction

Setting each denominator $=0$ identifies a bounded region in \vec{k} space

e.g.:

$$
\int d^{3} \vec{k} f^{3 \mathrm{~d}}(\mathscr{M}(k)) \sim \int d^{3} \vec{k}\left\{\frac{1}{E_{1}+E_{3}-p_{1}^{0}-p_{2}^{0}} \frac{1}{E_{0}+E_{1}-p_{1}^{0}} \cdots+\cdots\right\}
$$

$E_{1}+E_{3}-p_{1}^{0}-p_{2}^{0}=0$
for some $\vec{k}=\vec{k}^{*}$
if $\left(p_{1}+p_{2}\right)^{2}>0,\left(p_{1}^{0}+p_{2}^{0}\right)>0$

2110.06869, Kermanschah
around the threshold singularity at $\vec{k}=\vec{k}^{*}$ the integrand behaves as:

Buse this to build a local threshold counterterm $C T_{*}$, so that the subtracted integrand becomes locally finite at the threshold:

$$
\int d^{3} \vec{k} f^{3 \mathrm{~d}}(\mathscr{M}(k))=\int d^{3} \vec{k}\left\{f^{3 \mathrm{~d}}(\mathscr{M}(k))-\frac{\operatorname{Res}_{\vec{k}=\vec{k}^{*}}\left[f^{3 d}(\mathscr{M})\right]}{|\vec{k}|-k^{*} \pm i \varepsilon} \chi\left(\vec{k}, \vec{k}^{*}\right)\right\}+\int C T_{*}
$$

to find $\int C T_{*}$, use Sokhotski-Plemelj theorem

Numerical threshold subtraction

Setting each denominator $=0$ identifies a bounded region in \vec{k} space

e.g.:

$$
\int d^{3} \vec{k} f^{3 \mathrm{~d}}(\mathscr{M}(k)) \sim \int d^{3} \vec{k}\left\{\frac{1}{E_{1}+E_{3}-p_{1}^{0}-p_{2}^{0}} \frac{1}{E_{0}+E_{1}-p_{1}^{0}} \cdots+\cdots\right\}
$$

$E_{1}+E_{3}-p_{1}^{0}-p_{2}^{0}=0$
for some $\vec{k}=\vec{k}^{*}$
if $\left(p_{1}+p_{2}\right)^{2}>0,\left(p_{1}^{0}+p_{2}^{0}\right)>0$

2110.06869, Kermanschah
around the threshold singularity at $\vec{k}=\vec{k}^{*}$ the integrand behaves as:

* use this to build a local threshold counterterm $C T_{*}$, so that the subtracted integrand becomes locally finite at the threshold:

$$
\int d^{3} \vec{k} f^{3 \mathrm{~d}}(\mathscr{M}(k))=\int d^{3} \vec{k}\left\{f^{3 \mathrm{~d}}(\mathscr{M}(k))-\frac{\boldsymbol{\operatorname { R e s }}_{\vec{k}=\vec{k}^{*}}\left[f^{3 d}(\mathscr{M})\right]}{|\vec{k}|-k^{*} \pm i \varepsilon} \chi\left(\vec{k}, \vec{k}^{*}\right)\right\}+\int C T_{*}
$$

to find $\int C T_{*}$, use Sokhotski-Plemelj theorem

$$
\lim _{\epsilon \rightarrow 0} \frac{1}{x-a \pm i \epsilon}=P V \frac{1}{x-a} \mp i \pi \delta(x-a)
$$

Numerical threshold subtraction

Setting each denominator $=0$ identifies a bounded region in \vec{k} space

e.g.:

$$
\int d^{3} \vec{k} f^{3 \mathrm{~d}}(\mathscr{M}(k)) \sim \int d^{3} \vec{k}\left\{\frac{1}{E_{1}+E_{3}-p_{1}^{0}-p_{2}^{0}} \frac{1}{E_{0}+E_{1}-p_{1}^{0}} \cdots+\cdots\right\}
$$

$E_{1}+E_{3}-p_{1}^{0}-p_{2}^{0}=0$ for some $\vec{k}=\vec{k}^{*}$
if $\left(p_{1}+p_{2}\right)^{2}>0,\left(p_{1}^{0}+p_{2}^{0}\right)>0$

2110.06869, Kermanschah
around the threshold singularity at $\vec{k}=\vec{k}^{*}$ the integrand behaves as:
(3) use this to build a local threshold counterterm $C T_{*}$, so that the subtracted integrand becomes locally finite at the threshold:

$$
\int d^{3} \vec{k} f^{3 \mathrm{~d}}(\mathscr{M}(k))=\int d^{3} \vec{k}\left\{f^{3 \mathrm{~d}}(\mathscr{M}(k))-\frac{\boldsymbol{\operatorname { R e s }}_{\vec{k}=\vec{k}^{*}}\left[f^{3 d}(\mathscr{M})\right]}{|\vec{k}|-k^{*} \pm i \varepsilon} \chi\left(\vec{k}, \vec{k}^{*}\right)\right\}+\int C T_{*}
$$

to find $\int C T_{*}$, use Sokhotski-Plemelj theorem

$$
\lim _{\epsilon \rightarrow 0} \frac{1}{x-a \pm i \epsilon}=P V \frac{1}{x-a} \mp i \pi \delta(x-a) \quad \Longrightarrow \int C T_{*}=\mp i \pi \int d^{2} \hat{k} \operatorname{Res}_{*}(\hat{k}) \quad \text { for smart choice of } \chi
$$

Overlapping thresholds

Back to our example:

Bhere 6 threshold surfaces are active,
some intersections can lead to higher-order poles!

Add a local threshold counterterm for each possible threshold singularity

$$
C T_{*}=\frac{\operatorname{Res}_{\vec{k} \vec{k}^{*}}\left[f^{3 d}(\mathscr{M})\right]}{|\vec{k}|-k^{*} \pm i \varepsilon} \chi\left(\vec{k}, \vec{k}^{*}\right)
$$

The CFF representation gives constraints on which overlapping thresholds lead to higher order poles.

Overlapping thresholds

Back to our example:

Bhere 6 threshold surfaces are active,
some intersections can lead to higher-order poles!

Add a local threshold counterterm for each possible threshold singularity

$$
C T_{*}=\frac{\operatorname{Res}_{\vec{k} \vec{k}^{*}}\left[f^{3 d}(\mathscr{M})\right]}{|\vec{k}|-k^{*} \pm i \varepsilon} \chi\left(\vec{k}, \vec{k}^{*}\right)
$$

The CFF representation gives constraints on which overlapping thresholds lead to higher order poles.

Overlapping thresholds

Back to our example:

Bhere 6 threshold surfaces are active,
some intersections can lead to higher-order poles!

Add a local threshold counterterm for each possible threshold singularity

$$
C T_{*}=\frac{\boldsymbol{\operatorname { R e s }}_{\vec{k} \vec{k}^{*}}\left[f^{3 d}(\mathscr{M})\right]}{|\vec{k}|-k^{*} \pm i \varepsilon} \chi\left(\vec{k}, \vec{k}^{*}\right)
$$

The CFF representation gives constraints on which overlapping thresholds lead to higher order poles.

For higher order poles the same ie prescription needs to appear in the counterterms

Overlapping thresholds

Back to our example:

Bhere 6 threshold surfaces are active,
some intersections can lead to higher-order poles!

Add a local threshold counterterm for each possible threshold singularity

$$
C T_{*}=\frac{\boldsymbol{\operatorname { R e s }}_{\vec{k} \vec{k}^{*}}\left[f^{3 d}(\mathscr{M})\right]}{|\vec{k}|-k^{*} \pm i \varepsilon} \chi\left(\vec{k}, \vec{k}^{*}\right)
$$

The CFF representation gives constraints on which overlapping thresholds lead to higher order poles.

For higher order poles the same $i \epsilon$ prescription needs to appear in the counterterms
\Longrightarrow achieved by imposing same parametrisation of loop momentum space for overlapping threshold counterterms!

Does threshold structure change with phase space points?

Now $\quad \int d^{3} \vec{k} f^{3 \mathrm{~d}}(\mathscr{M}(k))=\int d^{3} \vec{k}\left\{f^{3 \mathrm{~d}}(\mathscr{M}(k))-\sum_{*} \frac{\boldsymbol{\operatorname { R e s }}_{\vec{k}=\vec{k}^{*}}\left[f^{3 d}(\mathscr{M})\right]}{| | \vec{k} \mid-k^{*} \pm i \varepsilon} \chi\left(\vec{k}, \vec{k}^{*}\right)\right\}+\sum_{*} \int C T_{*}$
is locally finite for each set of external momenta in the physical region.

If we keep the Lorentz frame constant, does the intersection of threshold surfaces change?

Integration over phase space

For this specific example, threshold structure varies with q_{1}, q_{2}, q_{3} sampled from the phase space generation in this way:
plot the threshold surfaces in the COM frame for different phase space points

The structure of the intersections is constant

Integration over phase space

For this specific example, threshold structure varies with q_{1}, q_{2}, q_{3} sampled from the phase space generation in this way:
plot the threshold surfaces in the COM frame for different phase space points

The structure of the intersections is constant

Integration over phase space

For this specific example, threshold structure varies with q_{1}, q_{2}, q_{3} sampled from the phase space generation in this way:
plot the threshold surfaces in the COM frame for different phase space points

The structure of the intersections is constant
\Longrightarrow the higher-order poles are the same over whole phase space!

This allows to...

Perform simultaneous Monte-Carlo integration $\mathrm{d} \Phi_{3} d^{3} \vec{k} d^{3} \vec{l}$ in:

㫧present gauge-invariant finite corrections to the virtual cross section! *save computing time!

Finally, we add back the integrated counterterms

The integration that we need to perform analytically for the IR and UV counterterms are much simpler than those needed for the full amplitude! The master integrals needed for N external γ^{*} are:

$$
\begin{aligned}
& \frac{\operatorname{TadP}\left(M^{2}\right)}{M^{2}}:=i\left(e^{\gamma_{E}} \mu^{2}\right)^{\varepsilon} \int \frac{\mathrm{d} k^{D}}{i \pi^{D / 2}} \frac{1}{k^{2}-M^{2}}=-i e^{\gamma_{E} \varepsilon} \Gamma(\varepsilon-1)\left(\frac{\mu^{2}}{M^{2}}\right)^{\varepsilon} \\
& \begin{aligned}
\frac{\operatorname{Tad} 2 \mathrm{P}\left(M^{2}\right)}{M^{2}} & :=i^{2}\left(e^{\gamma_{\varepsilon}} \mu^{2}\right)^{2 \varepsilon} \int \frac{\mathrm{~d} k^{D}}{i \pi^{D / 2}} \frac{\mathrm{~d} l^{D}}{i \pi^{D / 2}} \frac{1}{l^{2}(l+k)^{2}\left(k^{2}-M^{2}\right)}=-i^{2} e^{2 \varepsilon_{\gamma_{E}}} \frac{\Gamma(1-\varepsilon)^{2} \Gamma(2 \varepsilon-1) \Gamma(\varepsilon)}{\Gamma(2-\varepsilon)}\left(\frac{\mu^{2}}{M^{2}}\right)^{2 \varepsilon} \\
\operatorname{Bub}\left(s_{12}\right) & :=i\left(e^{\gamma_{\varepsilon}} \mu^{2}\right)^{\varepsilon} \int \frac{\mathrm{d} k^{D}}{i \pi^{D / 2}} \frac{1}{\left(k+p_{1}\right)^{2}\left(k-p_{2}\right)^{2}}=i \frac{e^{\gamma_{E} \varepsilon} \Gamma(1+\varepsilon) \Gamma(1-\varepsilon)^{2}}{\Gamma(2-2 \varepsilon) \varepsilon}\left(-\frac{\mu^{2}}{s_{12}}\right)^{\varepsilon}
\end{aligned} \\
& \begin{aligned}
\operatorname{Tri}\left(s_{12}\right) & :=i^{2}\left(e^{\gamma_{F}} \mu^{2}\right)^{2 \varepsilon} \int \frac{\mathrm{~d} k^{D}}{i \pi^{D / 2}} \frac{\mathrm{~d} l^{D}}{i \pi^{D / 2}} \frac{1}{l^{2}(l+k)^{2}\left(k+p_{1}\right)^{2}\left(k-p_{2}\right)^{2}} \\
& =i^{2} e^{2 \varepsilon \gamma_{E}} \Gamma(1+\varepsilon)^{2}\left(-\frac{\mu^{2}}{s_{12}}\right)^{2 \varepsilon}\left[\frac{1}{2 \varepsilon^{2}}+\frac{5}{2 \varepsilon}+\frac{19}{2}+\left(\frac{65}{2}-4 \zeta_{3}\right) \varepsilon+\left(\frac{211}{2}-20 \zeta_{3}-\frac{1}{15} \pi^{4}\right) \varepsilon^{2}+O\left(\varepsilon^{3}\right)\right]
\end{aligned}
\end{aligned}
$$

Results

virtual finite remainder with Catani-Seymour poles subtraction in $\overline{M S}$ convention

time/sample
virt

$$
p p \rightarrow \gamma^{*} \gamma^{*} \gamma^{*} \underset{\substack{ \\N_{f} C_{F} T_{F}(-8.12 \pm 0.16) \times 10^{-5} \mathrm{pb}}}{\substack{\text { preliminary }}} \quad 1.3 \mathrm{~ms}
$$

$$
\begin{array}{r}
C_{F}=4 / 3, \quad T_{F}=1 / 2, \quad N_{f}=5 \\
\text { with max } 10^{10} \mathrm{MC} \text { samples on } 48 \text { cores } \\
\sqrt{s}=13 \mathrm{TeV} \\
\mu_{F}=\mu_{r}=M_{Z}=91.1876 \mathrm{GeV} \\
5 \text { flavours of quarks in PDFs } \\
m_{\gamma^{*}, 1}=20.0 \mathrm{GeV} \quad m_{\gamma^{*}, 2}=50.0 \mathrm{GeV} \quad m_{\gamma^{*}, 3}=M_{Z} \\
p_{T, \gamma^{*}}>10.0 \mathrm{GeV}
\end{array}
$$

CT1nlo set (11000) LHAPDF [1412.7420 Buckley, Ferrando, Lloyd, Nordstrom, Page, Ruefenacht, Schoenherr, Watt]

Results

virtual finite remainder with Catani-Seymour

 poles subtraction in $\overline{M S}$ convention$\sigma_{\text {Virt }}^{\left(2, N_{f}\right)} \quad$ time/sample $\quad \Delta[\%]$

$p p \rightarrow \gamma \gamma \gamma \quad N_{f} C_{F} T_{F}(-2.42 \pm 0.03) \times 10^{-3} \mathrm{pb} \quad 0.03 \mathrm{~ms} \quad$| cross-check: |
| :--- |
| preliminary |

$C_{F}=4 / 3, \quad T_{F}=1 / 2, \quad N_{f}=5$
with max $10^{10} \mathrm{MC}$ samples
$\sqrt{s}=13 \mathrm{TeV}$
$\mu_{F}=\mu_{r}=M_{Z}=91.1876 \mathrm{GeV}$
5 flavours of quarks in PDFs

$$
p_{T, \gamma}>10.0 \mathrm{GeV}
$$

with max $10^{10} \mathrm{MC}$ samples

$$
\sqrt{s}=13 \mathrm{TeV}
$$

$$
\mu_{F}=\mu_{r}=M_{Z}=91.1876 \mathrm{GeV}
$$

5 flavours of quarks in PDFs

$$
p_{T, \gamma}>10.0 \mathrm{GeV}
$$

one-loop results

virtual finite remainder in BLHA convention cross-checked with MadGraph [1405.0301] thanks to Valentin Hirschi

preliminary

$\Delta[\%] \quad$ time/sample

$$
p p \rightarrow \gamma \gamma
$$

$$
(-1.6277 \pm 0.0002) \times 10^{2}
$$

pb
0.4
0.005 ms
$p p \rightarrow Z Z$ (only d quark in PDFs)

$$
p p \rightarrow \gamma \gamma \gamma \quad(4.02 \pm 0.06) \times 10^{-2} \quad \mathrm{pb} \quad 0.3 \quad 0.014 \mathrm{~ms}
$$

$$
\left.p p \rightarrow \gamma^{*} \gamma^{*} \gamma_{\left(m_{\gamma^{*}}^{*}\right.}=M_{Z}\right)
$$

$(2.446 \pm 0.012) \times 10^{-4}$
pb
0.3
0.3 ms

Conclusions

Numerical computation of the N_{f} contribution to $\sigma_{N N L O}^{\text {virtual }}\left(p p \rightarrow \gamma^{*} \gamma^{*} \gamma^{*}\right)$.

We can't wait to tackle with the same method the full two-loop numerical integration.

[^0]: use this to build a local threshold counterterm $C T_{*}$, so that the subtracted integrand becomes locally finite at the threshold:

