A new method for the reconstruction of rational functions

Xiao Liu

University of Oxford
Based on Phys. Lett. B 850 (2024) 138491 and work in preparation

Loops and Legs in Quantum Field Theory
16 April 2024, Wittenberg

Outline

I. Introduction

II. The method
III. Examples
IV. Summary and outlook

High precision particle physics

$>$ Multiloop scattering amplitudes

- Construct the amplitude

$$
\mathcal{A}=\sum c_{i} I_{i}
$$

- I_{i} : scalar Feynman integrals in dimensional regularization

$$
I(\vec{\nu})=\int \prod_{i=1}^{L} \frac{\mathrm{~d}^{D} \ell_{i}}{\mathrm{i} \pi^{D / 2}} \frac{\mathcal{D}_{K+1}^{-\nu_{K+1}} \cdots \mathcal{D}_{N}^{-\nu_{N}}}{\left(\mathcal{D}_{1}+\mathrm{i} 0\right)^{\nu_{1}} \cdots\left(\mathcal{D}_{K}+\mathrm{i} 0\right)^{\nu_{K}}}
$$

- Compute the scalar integrals: reduction + computation
- reduction: express all the scalar integrals in terms of a smaller set of independent integrals (master integrals)

$$
I_{i}=\sum_{j} b_{i j} M_{j}
$$

- computation: compute the master integrals as expansions in the dimensional

$$
\begin{aligned}
& \text { regulator } \epsilon=(4-D) / 2 \\
& \qquad M_{j}=\sum_{l=-2 L} d_{j k} \epsilon^{k}
\end{aligned}
$$

Feynman integrals

- Integration-by-parts reduction [Chetyrkin and Tkachov, Nucl. Phys. B, 1981] [Laporta, Int. J. Mod. Phys. A, 2000]
- AIR [Anastasiou and Lazopoulos, JHEP, 2004]
- FIRE [Smirnov, JHEP, 2008] [Smirnov, Smirnov, Comput. Phys. Commun., 2013] [Smirnov, Comput. Phys. Commun., 2015] [Smirnov and Chuharev, Comput. Phys. Commun., 2020]
- Reduze [Studerys, Comput. Phys. Commun., 2010] [Manteuffel and Studerus, e-Print: 1201.4330]
- Kira [Maierhofer, Usovitsch and Uwer, Comput. Phys. Commun., 2018] [Klappert, Lange, Maierhofer and Usovitsch, Comput. Phys. Commun., 2021]
- LiteRed [Lee, 2012] [Lee, 2014]
- NeatIBP [Wu, Boehm, Ma, et al, Comput. Phys. Commun., 2024]
- Finite-field reconstruction [Manteuffel and Schabinger, Phys. Lett. B, 2015] [Peraro, JHEP, 2016]
- FiniteFlow [Peraro, JHEP, 2019]
- FireFly [Klappert and Lange, Comput. Phys. Commun., 2020]

Summary

time $=\underline{\text { time for a single sample } \times \text { number of samples }}$ number of CPUs

Refined IBP systems:
syzygy equations [Gluza, Kajda and Kosower, Phys. Rev. D, 2011] [Larsen and Zhang, Phys. Rev. D, 2016]
block-triangular systems [Guan, XL, Ma,
Chin.Phys.C, 2020]
new version of Kira \rightarrow talks by Matteo Fael, Fabian Lange
better interpolation methods [Klappert and Lange, Comput.Phys.Commun. 2020] [Belitsky, Smirnov, Yakovlev, 2023.02511]
more compact ansatz[Badger, Hansen, Chicherin, et al, JHEP 2021][Laurentis, Page, JHEP 2022] [Abreu, Laurentis, Ita, et al, 2305.17056]

Q-linear relations \rightarrow talk by Giuseppe De Laurentis
P-adic reconstruction \rightarrow talk by Herschel Chawdhry the method in this talk

More powerful linear solver:
RATRACER [Magerya, e-Print: 2211.03572]

Outline

I. Introduction

II. The method

III. Examples
IV. Summary and outlook

Motivation

> A simple observation

- Traditional strategy: reconstructing functions individually \& neglecting common structures
- Example

$$
f_{i}(x)=\left(\frac{1+x}{1-x}\right)^{i-1}, \quad i \in[1,100]
$$

- approximately 200 samples using Thiele's interpolation formula
- a system of relations

$$
(1-x) f_{i+1}(x)-(1+x) f_{i}(x)=0, \quad i \in[1,99]
$$

- ansatz + linear fit $\rightarrow 4$ samples

$$
\left(a_{i}+b_{i} x\right) f_{i+1}(x)+\left(c_{i}+d_{i} x\right) f_{i}(x)=0
$$

- Linear relations \rightarrow common structures utilized \rightarrow number of samples reduced

The method

$>$ General description

- Relations among nonzero functions $f_{1}(\vec{x}), \ldots, f_{n}(\vec{x})$

$$
Q_{1}(\vec{x}) f_{1}(\vec{x})+\cdots+Q_{n}(\vec{x}) f_{n}(\vec{x})=0
$$

- Comments:
- Number of independent relations is $n-1$
- not n, otherwise $f_{i}(\vec{x})=0$
- no less than $n-2$, otherwise the basis contains at least two functions f_{i}

$$
\text { and } f_{j} \text {. However, } f_{i}=\frac{f_{i}}{f_{j}} \times f_{j}
$$

- Polynomial-coefficients $Q(\vec{x})$ exist
- Goal: find $n-1$ independent relations with polynomial-coefficients

The method

- Algorithm from [Guan, XL, Ma, Chin.Phys.C, 2020]

1. start with $n=0$
2. make a degree- n ansatz for the relations
3. generate numerical samples of functions
4. determine the unknown parameters in the ansatz through a linear fit
5. count the number of independent relations: if sufficient, end; otherwise increase
n by 1 and go to step 2

The method

$$
f_{1}(x)=1, \quad f_{2}(x)=\frac{1+x}{1-x}
$$

- degree- 0 ansatz: $Q_{1} f_{1}(x)+Q_{2} f_{2}(x)=0$
- $x=100 \rightarrow f_{1}=1, f_{2}=101 / 99 \rightarrow Q_{1}+101 / 99 Q_{2}=0$
- $x=101 \rightarrow f_{1}=1, f_{2}=102 / 100 \rightarrow Q_{1}+102 / 100 Q_{2}=0$
- no solution \rightarrow go to degree-1 ansatz
- degree-1 ansatz: $\left(Q_{10}+Q_{11} x\right) f_{1}(x)+\left(Q_{20}+Q_{21} x\right) f_{2}(x)=0$
- $x=100 \rightarrow f_{1}=1, f_{2}=\frac{101}{99} \rightarrow\left(Q_{10}+100 Q_{11}\right)+\frac{\left(Q_{20}+Q_{21} 100\right) 101}{99}=0$
- $x=101 \rightarrow f_{1}=1, f_{2}=\frac{102}{100} \rightarrow\left(Q_{10}+101 Q_{11}\right)+\frac{\left(Q_{20}+Q_{21} 101\right) 102}{100}=0$
- $x=102 \rightarrow f_{1}=1, f_{2}=\frac{103}{101} \rightarrow\left(Q_{10}+102 Q_{11}\right)+\frac{\left(Q_{20}+Q_{21} 102\right) 103}{101}=0$
- $x=103 \rightarrow f_{1}=1, f_{2}=\frac{104}{102} \rightarrow\left(Q_{10}+103 Q_{11}\right)+\frac{\left(Q_{20}+Q_{21} 103\right) 104}{102}=0$
- One solution: $Q_{10}=Q_{11}=Q_{20}=-1, Q_{21}=1$

$$
(1+x) f_{1}(x)+(1-x) f_{2}(x)=0
$$

The method

- Summary
- generator of samples
- e.g., IBP system + linear solver over finite fields
- linear relations
- make various ansatz for $Q_{1}(\vec{x}) f_{1}(\vec{x})+\cdots+Q_{n}(\vec{x}) f_{n}(\vec{x})=0$
- generate samples
- linear fit (dense linear system over finite fields)
- About the obtained relations
- can be easily solved by e.g.
- traditional rational functions reconstruction strategy
- additional finite fields + rational numbers reconstruction (Chinese

Remainder Theorem + Wang's algorithm [Wang, 1981])

Outline

I. Introduction

II. The method
III. Examples
IV. Summary and outlook

Examples

- Reduction coefficients of Feynman integrals or amplitudes

$$
\mathcal{A}=f_{1} \mathcal{M}_{1}+\cdots+f_{n} \mathcal{M}_{n}
$$

- a common set of denominators reflecting the singularities

Examples

- Topology (a): two-loop amplitude of the mixed QCD-electroweak correction to $p p \rightarrow Z+j$ [Bargiela, Caola, Chawdhry, XL, 2312.14145]
- Setup
- $m_{Z}^{2}=1, m_{W}^{2}=7 / 9$
- remaining: $\left\{\epsilon, s_{12}, s_{13}\right\}$
- 56 master integrals $\Rightarrow 56$ rational functions
- auxiliary function $f_{57}=1$
- LiteRed + FiniteFlow

- Details
- Completed with degree-6 ansatz
- Number of samples: from 54978 (FiniteFlow) to $5321 \rightarrow$ a factor of 10.3
- Computational cost: from 4.6 h to $0.47 \mathrm{~h} \Rightarrow$ a factor of 9.8
- The computational cost is dominated by samples generation.

Examples

topology	variables	generator	degree	samples	samples (old)	$R_{\text {samples }}$	cost	cost (old)	$R_{\text {cost }}$
(a), 56	ϵ, s_{12}, s_{13}	LR+FF	6	5321	54978	10.3	0.47 h	4.6 h	9.8
(b), 83	ϵ, s_{12}, s_{13}	$\mathrm{NI}+\mathrm{FF}$	8	15208	145722	9.6	8.2 h	78.5 h	9.6
(c), 280	ϵ, s_{12}, s_{13}	LR+FF	8	43662	2351622	54	8549 h	450728 h	53
(d), 336	ϵ, η	LR+FF	5	41350	473946	11.5	340 h	2320 h	9.5

- (a): amplitude
- (b): rank -6 integral
- (c): differential equations with respect to s_{12}, s_{13}
- (d): differential equations with respect to η (AMFlow)

Examples

- Discussion
- samples generation + linear fit + explicit solutions
- linear fit
- Undominated if the ansatz is not too big (less than 20000 parameters)
- For most problems with less than 3 variables, this holds true.
- For topology (c): the biggest ansatz contains 6810 parameters
- For problems with five-point kinematics, this can become a problem.
- explicit solutions
- Undominated in most cases
- For topology (b): IBP system costs 1.3 s per point; our linear relations cost 0.0024 s per point $\rightarrow 540$ times faster

Examples

- A step towards multivariate problems [in preparation]
- five variables: $\epsilon, s_{23}, s_{34}, s_{45}, s_{51}\left(s_{12}=1\right)$
- full ansatz may contain $O(100000)$ parameters

- work in four-dimensional slices $\left(s_{23}, s_{34}, s_{45}, s_{51}\right)$
- $\epsilon \rightarrow \epsilon_{0}$
- For fixed ϵ, deal with the four-variate problem (ansatz size: 14000)

$$
\frac{a_{0}+a_{1} s_{23}+a_{2} s_{34}+a_{3} s_{45}+\cdots}{1+b_{1} s_{23}+a_{2} s_{34}+b_{3} s_{45}+\cdots}
$$

- $\quad a$'s and b 's are rational functions of ϵ to be reconstructed
- 400000 samples in total to reconstruct the fully analytic expressions over a finite field
- FiniteFlow requires approximately $O\left(10^{7}\right)$ points

Outline

I. Introduction

II. The method

III. Examples
IV. Summary and outlook

Summary and Outlook

- A new method for the reconstruction of rational functions is proposed, which works by exploiting all the independent linear relations among the target functions.
- The method effectively reduces the number of sample points required in the framework of finite-field sampling.
- The method works well for problems with no more than three variables, i.e., problems with three-point or four-point kinematics.
- For problems with five-point kinematics, some preliminary results shows that the method can still work, but further studies are required.

> Thank you!

