

Corrections to BSM Triple Higgs Couplings and their phenomenological consequences

Sven Heinemeyer, IFT (CSIC, Madrid)

Wittenberg, 04/2024

1. Introduction: (BSM) di-Higgs production at the (HL-)LHC

2. Calculation

- 3. Phenomenological impact
- 4. BSM di-Higgs production at e^+e^- colliders
- 5. Conclusions

1. Introduction: (BSM) di-Higgs production at the (HL-)LHC

1. Introduction: (BSM) di-Higgs production at the (HL-)LHC

⇒ Why is there more matter than antimatter? ⇒ (EW) baryogenesis ⇒ requires First Order EW Phase Transition (FOEWPT) FOEWPT not possible in the SM ⇒ BSM Higgs sector required FOEWPT can cause Gravitational Waves (GW), detectable with LISA, ...

Phase transition: BSM vs. SM

 \Rightarrow BSM Higgs sector (large THCs) required to realize FOEWPT

Bubble formation can lead to Gravitational Waves

[taken from D. Weir]

\Rightarrow BSM Higgs sector (large THCs) required to realize FOEWPT

Our choice for BSM Higgs sectors: Two Higgs Doublet Model (2HDM): Fields:

$$\Phi_1 = \begin{pmatrix} \phi_1^+ \\ \frac{1}{\sqrt{2}}(v_1 + \rho_1 + i\eta_1) \end{pmatrix}, \ \Phi_2 = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}}(v_2 + \rho_2 + i\eta_2) \end{pmatrix}$$

Potential:

$$V = m_{11}^{2} |\Phi_{1}|^{2} + m_{22}^{2} |\Phi_{2}|^{2} - m_{12}^{2} (\Phi_{1}^{\dagger} \Phi_{2} + h.c.) + \frac{\lambda_{1}}{2} (\Phi_{1}^{\dagger} \Phi_{1})^{2} + \frac{\lambda_{2}}{2} (\Phi_{2}^{\dagger} \Phi_{2})^{2} + \lambda_{3} (\Phi_{1}^{\dagger} \Phi_{1}) (\Phi_{2}^{\dagger} \Phi_{2}) + \lambda_{4} (\Phi_{1}^{\dagger} \Phi_{2}) (\Phi_{2}^{\dagger} \Phi_{1}) + \frac{\lambda_{5}}{2} [(\Phi_{1}^{\dagger} \Phi_{2})^{2} + h.c.]$$

Physical states: *h*, *H*, (CP-even), *A* (CP-odd), *H*[±] (charged)

"Physical" input parameters:

$$c_{eta-lpha}$$
 , $aneta$, v , M_h , M_H , M_A , M_{H^\pm} , m_{12}^2

Alignment limit: $c_{\beta-\alpha} \rightarrow 0$ (for $M_h \sim 125 \text{ GeV}$)

Many triple Higgs couplings: λ_{hhh} , λ_{hhH} , λ_{hHH} , λ_{hH+H^-} , λ_{HAA} , ...

Assumption: $h \sim h_{125}$

 Z_2 symmetry to avoid FCNC:

$$\Phi_1 \to \Phi_1 \;,\; \Phi_2 \to -\Phi_2$$

Extension of the Z_2 symmetry to fermions determines four types:

	<i>u</i> -type	<i>d</i> -type	leptons	
type I	Φ2	Φ2	Φ2	
type II	Φ2	Φ1	Φ1	ightarrow SUSY type
type III (lepton-specific)	Φ2	Φ2	Φ1	
type IV (flipped)	Φ2	Φ_1	Φ2	

Sum rule (with h SM-like): $\sin(\beta - \alpha) \approx 1$, $\cos(\beta - \alpha) \approx 0$

Unitarity/perturbativity and EWPO : $\Rightarrow M_A \sim M_H \sim M_{H^{\pm}}$

2. Calculation

Basics on di-Higgs production at the (HL-)LHC

[taken from M. Spira]

• third generation dominant $\rightarrow t, b$

 \Rightarrow predictions "easily" available in NLO QCD (heavy top limit)

Basics on di-Higgs production at the (HL-)LHC

In the SM there is much more available:

[1] Glover, van der Bij 88; [2] Dawson, Dittmaier, Spira 98; [3] Shao, Li, Li, Wang 13; [4] Grigo, Hoff, Melnikov, Steinhauser 13; [5] de Florian, Mazzitelli 13; [6] Grigo, Melnikov, Steinhauser 14; [7] Grigo, Hoff 14; [8] Maltoni, Vryonidou, Zaro 14; [9] Grigo, Hoff, Steinhauser 15; [10] de Florian, Grazzini, Hanga, Kallweit, Lindert, Maierhöfer, Mazzitelli, Rathlev 16; [11] Borowka, Greiner, Heinrich, SPJ, Kerner, Schlenk, Schubert, Zirke 16; [12] Borowka, Greiner, Heinrich, SPJ, Kerner, Schlenk, Schubert, Zirke 16; [12] Borowka, Greiner, Heinrich, SPJ, Kerner, Luisoni, Vryonidou 17; [15] SPJ, Kuttimalai 17; [16] Gröber, Maier, Rauh 17; [17] Baglio, Campanario, Glaus, Mühlleitner, Spira, Streicher 18; [18] Grazzini, Heinrich, SPJ, Kallweit, Kerner, Lindert, Mazzitelli 18; [19] de Florian, Mazzitelli 18; [20] Bonciani, Degrassi, Giardino, Gröber 18; [21] Davies, Mishima, Steinhauser, Wellmann 18, 18; [22] Mishima 18; [23] Gröber, Maier, Rauh 19; [24] Davies, Heinrich, SPJ, Kerner, Mishima, Steinhauser 19; [26] Chen, Li, Shao, Wang 19, 19; [27] Davies, Herren, Mishima, Steinhauser 19, 21; [28] Baglio, Campanario, Glaus, Mühlleitner, Ronca, Spira 21; [29] Bellafronte, Degrassi, Giardino, Gröber, Vitti 22;

S. Jones

Size of the SM corrections has stabilized (albeit with uncertainties)

Di-Higgs production at the LHC: $\kappa_{\lambda} := \lambda_{hhh} / \lambda_{hhh}^{SM}$

 \Rightarrow strong interference of "box" and "SM-like Higgs"

\Rightarrow higher-order corrections to κ_{λ} potentially very important

Higher-order correction to BSM THCs:

One-loop non-decoupling effects

First found in 2HDM: [Kanemura, Kiyoura, Okada, Senaha, Yuan '02]

 \mathcal{M} : **BSM mass scale**, e.g. soft breaking scale M of Z₂ symmetry in 2HDM n_{Φ} : # of d.o.f of field Φ

 $\,\,$ Size of new effects depends on how the BSM scalars acquire their mass: $\,m_\Phi^2\sim {\cal M}^2+ ilde\lambda v^2$

$$\left(1 - \frac{\mathcal{M}^2}{m_{\Phi}^2}\right)^3 \longrightarrow \begin{cases} 0, \text{ for } \mathcal{M}^2 \gg \tilde{\lambda} v^2 \\ 1, \text{ for } \mathcal{M}^2 \ll \tilde{\lambda} v^2 & \longrightarrow \end{cases} \begin{array}{l} \text{Huge BSM} \\ \text{effects possible!} \end{cases}$$

 \Rightarrow effects of 500% - 1000% found . . .

\Rightarrow effects of 500% - 1000% found ... \Rightarrow perturbativity??

\Rightarrow Perturbativity is found going from 1L to 2L

Details of possible higher-order correction to BSM THCs:

[taken from A. Verduras]

Details of possible higher-order correction to BSM THCs:

[taken from A. Verduras]

External leg corrections

• The external leg corrections depend on the momentum of the external legs

$$\delta^{(1)}\lambda_{hhh}^{\text{WFR}} = \sum_{i} \left(\frac{1}{2} \Sigma_{hh}'(p_i^2)\lambda_{hhh}^{(0)} + \sum_{j,h_j \neq h} \frac{\Sigma_{hh_j}(p_i^2)}{p_i^2 - m_{h_j}^2} \lambda_{h_jhh}^{(0)} \right)$$
$$\equiv \sum_{i} \left(\frac{1}{2} \delta^{(1)} Z_h(p_i^2)\lambda_{hhh}^{(0)} + \sum_{j,h_j \neq h} \delta^{(1)} Z_{hh_j}(p_i^2)\lambda_{h_jhh}^{(0)} \right)$$

[arXiv: 2305.03015 H. Bahl, J, Braathen, M. Gabelmann, G. Weiglein]

Details of possible higher-order correction to BSM THCs:

For "no full-OS" renormalization: [taken from A. Verduras] External leg correction effect

No external legs corrections

On-shell external legs

\Rightarrow full calculation, or good/well justified scale choice

[taken from J. Braathen]

Momentum dependent effects:

anyH3: momentum dependence in the 2HDM (1L)

Box vs. s channel Higgs:

Inclusion of one-loop corrections to THCs:

 \Rightarrow always closed subset, dominant for large THCs \Rightarrow see also M. Kerner's talk yesterday

Genuine BSM THC effects:

[taken from K. Radchenko]

BSM effects that can only be captured by explicite calculations

```
Di-Higgs production (gg \rightarrow hh)
```

[Plehn, Spira, Zerwas : arXiv: 9603205]

- Dominant process at the LHC gluon fusion via quark loop (mostly the top): $\sigma_{SM} \sim 38$ fb (NLO QCD)

We include corrections to this process by means of effective trilinear Higgs couplings assuming that the largest contribution comes from this type of diagrams and others can be neglected (eg. double box diagram):

- Is this reasonable? -> modifications of λ_{hhh} are the leading source of deviations of non resonant hh production cross section

[Bahl, Braathen, Weiglein : arXiv: 2202.03453]

Genuine BSM THC effects:

BSM effects that can only be captured by explicite calculations

Effect of changes of λ_{hhH} in m_{hh} [Arco, Heinemeyer, Mühlleitner, Radchenko: <u>arXiv: 2212.11242</u>]

- Such a different phenomenology can be induced by the inclusion of loop corrections to the trilinears

- One loop corrections to $\lambda_{\rm hhH}$ in general are subleading in the allowed regions. However, in scenarios with mass splitting the sign of $\lambda_{\rm hhH}$ can change.

• $\lambda_{h\phi\phi} \propto (M^2 - m_{\phi}^2)$ [Braathen, Kanemura: arxiv: 1911.11507]

- Smaller enhancement in the total cross section - The corrections on $\lambda_{\rm hhH}$ lead to a completely different phenomenology in invariant mass distributions compared to the tree level coupling

Three-loop effects consistently taken into account in the 2HDM:

[taken from K. Radchenko]

Radiative corrections to the trilinear couplings

- Crucial for first order electroweak phase transition
- We use the effective potential approach and implement an effective coupling in the di-Higgs production

- The calculation is done by means of the public code BSMPT: [Basler, Mühlleitner: arXiv: 1803.02846]
- It is performed in the limit of zero external momentum
- Physical masses and mixing angles are renormalized on shell to their tree level value
- An alternative approach would be to compute the corrections diagrammatically: anyH3

Case 1: Non-resonant BSM di-Higgs production

Case 2: Resonant BSM di-Higgs production

Q: effects of higher-order corrections to THCs?

Important: experimental limits are obtained for

- non-resonant production
- purely resonant production
- \Rightarrow no limits available for mixed scenarios :-(

Non-resonant BSM di-Higgs production

[S.H., M. Mühlleitner, K. Radchendo, G. Weiglein – PRELIMINARY]

 \Rightarrow higher-order effects in κ_{λ}

 \Rightarrow huge effects on m_{hh} distributions \Rightarrow effects on search limits?

Non-resonant BSM di-Higgs production

[S.H., M. Mühlleitner, K. Radchendo, G. Weiglein '24]

⇒ higher-order effects in κ_{λ} ⇒ visible effect on allowed parameter space

Resonant BSM di-Higgs production

[S.H., M. Mühlleitner, K. Radchenko, G. Weiglein '24]

⇒ higher-order effects in κ_{λ} and λ_{hhH} ⇒ huge effects on m_{hh} distributions ⇒ effects on search limits?

[S.H., M. Mühlleitner, K. Radchenko, G. Weiglein – PRELIMINARY]

 \Rightarrow experimental analysis \Rightarrow full calculation

[S.H., M. Mühlleitner, K. Radchenko, G. Weiglein '24]

 \Rightarrow experimental analysis \Rightarrow full calculation

[S.H., M. Mühlleitner, K. Radchenko, G. Weiglein '24]

 \Rightarrow excluded by ATLAS resonant searches \Leftrightarrow reality: exclusion?

[S.H., M. Mühlleitner, K. Radchenko, G. Weiglein '24]

 \Rightarrow excluded by ATLAS resonant searches \Leftrightarrow reality: exclusion?

4. BSM di-Higgs production at e^+e^- colliders

Higgs-strahlung: $e^+e^- \rightarrow Z^* \rightarrow Zhh$

weak boson fusion (WBF): $e + e^{-} \rightarrow \nu \overline{\nu} h h$

Signal and background interference:

Di-Higgs production at ILC/CLIC:

 $e^+e^- \rightarrow Zhh$ $e^+e^- \rightarrow v \overline{v} hh$ 4 ILC 500 GeV, $P(e^-, e^+) = (\mp 0.8, \pm 0.3), {0.19 \atop 0.13}$ fb ---- ILC 1 TeV, $P(e^{-}, e^{+}) = (-0.8, 0.2), 0.13$ fb ILC 1 TeV, P(e⁻,e⁺)=(-0.8,0.2), 0.17 fb ----- CLIC 1.4 TeV, unpolarized, 0.15 fb CLIC 1.4 TeV, unpolarized, 0.09 fb ---- CLIC 3 TeV, unpolarized, 0.59 fb 3 3 CLIC 3 TeV, unpolarized, 0.03 fb olo_{SM} σlosm 2 2 ILC 500GeV (±16.8% ------ILC 1TeV (±37%) CLIC 1.4TeV (±44%) 0 -1.0 î ca c 0 _2 е Г. е. т -0.50.0 0.5 1.0 1.5 2.0 2 -1 0 1 δκλ δκλ

 $\kappa_{\lambda} := 1 + \delta \kappa_{\lambda}$

 \Rightarrow strong and different dependence on κ_{λ}

Higgs-strahlung: $e^+e^- \rightarrow Z^* \rightarrow Zhh$

weak boson fusion (WBF):

 $e + e - \rightarrow \nu \bar{\nu} h h$

Difference w.r.t. $gg \rightarrow hh$:

- alignment limit gives the SM result for e^+e^-
- CP-odd Higgs bosons enter into the calculation (but not with THCs)

Di-Higgs production at the ILC:

[F. Arco, S.H., M. Herrero '21]

Example: 2HDM type I $e^+e^- \rightarrow Zh$

 $e^+e^- \rightarrow Zhh/\nu\bar{\nu}hh$ with MadGraph

 $m_{H,A,H^{\pm}} = 300 \text{ GeV}, t_{\beta} = 10, c_{\beta-\alpha} = 0.25, m_{12}^2 = m_H^2 c_{\alpha}^2 / t_{\beta} \Rightarrow \kappa_{\lambda} = 1.1, \lambda_{hhH} = -0.2$

theory analysis: $R := (\bar{N}^R - \bar{N}^C) / \sqrt{\bar{N}^C}$ R = "resonance", C = "continuum", \bar{N} incl. cuts and *b*-tagging efficiencies $\sqrt{s} = 500 (1000) \text{ GeV} \Rightarrow R = 58 (205)$

experimental analysis: crucially needed!

[F. Arco, S.H., M. Mühlleitner – PRELIMINARY]

 $\tan \beta = 12, \ c_{\beta-\alpha} = 0.12, \ m_H = \bar{m} = 300 \text{ GeV}, \ m_A = m_{H^{\pm}} = 650 \text{ GeV}$ $\kappa_{\lambda}^{\text{tree}} = 0.95, \ \kappa_{\lambda}^{\text{NLO}} = 4.69$ $\lambda_{hhH}^{\text{tree}} = 0.02, \ \lambda_{hhH}^{\text{NLO}} = 0.21$

[F. Arco, S.H., M. Mühlleitner – PRELIMINARY]

 $\tan \beta = 12, c_{\beta-\alpha} = 0.12, m_H = \bar{m} = 300 \text{ GeV}, m_A = m_{H^{\pm}} = 650 \text{ GeV}$ $\kappa_{\lambda}^{\text{tree}} = 0.95, \kappa_{\lambda}^{\text{NLO}} = 4.69$ $\lambda_{hhH}^{\text{tree}} = 0.02, \lambda_{hhH}^{\text{NLO}} = 0.21$

[F. Arco, S.H., M. Mühlleitner – PRELIMINARY]

 $\tan \beta = 12, \ c_{\beta-\alpha} = 0.12, \ m_H = \bar{m} = 300 \text{ GeV}, \ m_A = m_{H^{\pm}} = 650 \text{ GeV}$ $\kappa_{\lambda}^{\text{tree}} = 0.95, \ \kappa_{\lambda}^{\text{NLO}} = 4.69$ $\lambda_{hhH}^{\text{tree}} = 0.02, \ \lambda_{hhH}^{\text{NLO}} = 0.21$

[F. Arco, S.H., M. Mühlleitner – PRELIMINARY]

$$\begin{split} &\tan\beta = 12, \ c_{\beta-\alpha} = 0.12, \ m_H = \bar{m} = 300 \ \text{GeV}, \ m_A = m_{H^\pm} = 650 \ \text{GeV} \\ &\kappa_{\lambda}^{\text{tree}} = 0.95, \ \kappa_{\lambda}^{\text{NLO}} = 4.69 \\ &\lambda_{hhH}^{\text{tree}} = 0.02, \ \lambda_{hhH}^{\text{NLO}} = 0.21 \end{split}$$

[F. Arco, S.H., M. Mühlleitner – PRELIMINARY]

 $\tan \beta = 20, \ c_{\beta-\alpha} = 0.10, \ m_H = \bar{m} = 350 \text{ GeV}, \ m_A = m_{H^{\pm}} = 650 \text{ GeV}$ $\kappa_{\lambda}^{\text{tree}} = 0.995, \ \kappa_{\lambda}^{\text{NLO}} = 5.47$ $\lambda_{hhH}^{\text{tree}} = -0.07, \ \lambda_{hhH}^{\text{NLO}} = 0.16$

[F. Arco, S.H., M. Mühlleitner – PRELIMINARY]

 $\tan \beta = 20, \ c_{\beta-\alpha} = 0.10, \ m_H = \bar{m} = 350 \text{ GeV}, \ m_A = m_{H^{\pm}} = 650 \text{ GeV}$ $\kappa_{\lambda}^{\text{tree}} = 0.995, \ \kappa_{\lambda}^{\text{NLO}} = 5.47$ $\lambda_{hhH}^{\text{tree}} = -0.07, \ \lambda_{hhH}^{\text{NLO}} = 0.16$

[F. Arco, S.H., M. Mühlleitner – PRELIMINARY]

 $\tan \beta = 20, \ c_{\beta-\alpha} = 0.10, \ m_H = \bar{m} = 350 \text{ GeV}, \ m_A = m_{H^{\pm}} = 650 \text{ GeV}$ $\kappa_{\lambda}^{\text{tree}} = 0.995, \ \kappa_{\lambda}^{\text{NLO}} = 5.47$ $\lambda_{hhH}^{\text{tree}} = -0.07, \ \lambda_{hhH}^{\text{NLO}} = 0.16$

[F. Arco, S.H., M. Mühlleitner – PRELIMINARY]

$$\begin{split} &\tan\beta = 20, \; c_{\beta-\alpha} = 0.10, \; m_H = \bar{m} = 350 \; \text{GeV}, \; m_A = m_{H^\pm} = 650 \; \text{GeV} \\ &\kappa_\lambda^{\text{tree}} = 0.995, \; \kappa_\lambda^{\text{NLO}} = 5.47 \\ &\lambda_{hhH}^{\text{tree}} = -0.07, \; \lambda_{hhH}^{\text{NLO}} = 0.16 \end{split}$$

5. Conclusions

⇒ Why is there more matter than antimatter? ⇒ (EW) baryogenesis
⇒ requires First Order EW Phase Transition (FOEWPT)
FOEWPT not possible in the SM ⇒ BSM Higgs sector required
FOEWPT can cause Gravitational Waves (GW), detectable with LISA

• <u>2HDM:</u>

Many triple Higgs couplings: λ_{hhh} , λ_{hhH} , λ_{hHH} , $\lambda_{hH+H^{-}}$, λ_{HAA} , ...

- \Rightarrow large loop corrections to $\kappa_{\lambda} := \lambda_{hhh} / \lambda_{hhh}^{SM}$ possible (many sublteties can be taken into account)
- $gg \rightarrow hh$:
 - large corrections to κ_{λ} have a drastic effect on the XS (large destructive interference of box and *h* resonance)
 - $-\lambda_{hhH}$ enters via resonant H exchange
 - loop corrections to THCs form a closed and often leading subset
- Experimental limits from non-resonant di-Higgs searches:
 - limits depend on the value of κ_λ
 - one-loop corrections can rule out otherwise allowed parameter space
- Experimental limits from non-resonant di-Hiiggs searches:
 - \Rightarrow exp. analyses leave out interferences \Rightarrow results not reliable

Katharsis of Ultimate Theory Standards Meeting 2.2 @ DESY (Hamburg) 26 – 28 June 2024

indico.desy.de/event/43627

Emmy Noether-Programm

DFG 🗄

Organized by: S. Heinemeyer, P. Slavich Local organizers: J. Braathen, G. Weiglein

Further Questions?

SM triple Higgs coupling: comparison of all colliders:

Higgs@FC WG September 2019

BSM case 1: $\kappa_{\lambda} \neq 1$ BSM case 2: THC that involves BSM Higgses: λ_{hhH} , ...

Measurement of κ_{λ} selfcoupling at HL-LHC/ILC:

[J. List et al. – PRELIMINARY]

FOEWPT/GW: $\lambda_{hhh} \lesssim 2 \Rightarrow$ bad for HL-LHC, good for ILC

Measurement of κ_{λ} selfcoupling at HL-LHC/ILC:

[J. List et al. – PRELIMINARY]

\Rightarrow over most of the parameter space ILC is clearly superior to HL-LHC

2HDM parameter scan to yield FOEWPT:

[T. Biekötter, S.H., J. No, O. Olea, G. Weiglein '22]

 \Rightarrow GW signal requires $\kappa_\lambda \sim 2$

Benchmark point: 2HDM type I, $m_{A,H^{\pm}} = 545 \text{ GeV}, m_H = 515 \text{ GeV}, t_{\beta} = 10, c_{\beta-\alpha} = 0.2, m_{12}^2 = m_H^2 c_{\alpha}^2 / t_{\beta}$

 \Rightarrow dip-peak / peak-dip from resonant *H*-exchange \Rightarrow access to λ_{hhH} ?

Di-Higgs production at the HL-LHC: [F. Arco, S.H., M. Mühlleitner, K. Radchenko '22]

Benchmark point: 2HDM type I, $m_{A,H^{\pm}} = 545 \text{ GeV}, m_H = 515 \text{ GeV}, t_{\beta} = 10, c_{\beta-\alpha} = 0.2, m_{12}^2 = m_H^2 c_{\alpha}^2 / t_{\beta}$

 \Rightarrow smearing of 15% applied (optimistic?) \Rightarrow access to λ_{hhH} ?

 \Rightarrow binning of 50 GeV applied (realistic?) \Rightarrow access to λ_{hhH} ?

My first neural network analysis

Parameter plane to train the NN:

[M. Frank, S.H., M. Mühlleitner, K. Radchenko, PRELIMINARY]

Each point yields an m_{hh} distribution \Rightarrow fed to the NN

[M. Frank, S.H., M. Mühlleitner, K. Radchenko, PRELIMINARY]

- 15 input values (smeared and binned)
- 3 hidden layers with 128 nodes
- output layer to yield $\lambda_{hhH} imes \xi_{H}^{t}$
- training with 3/4 of m_{hh} distribution (randomly chosen)
- "measure" the remaining 1/4 (or ...)

Train with the correct m_{hh} distributions: \Rightarrow perfect result

[M. Frank, S.H., M. Mühlleitner, K. Radchenko, PRELIMINARY]

"Realistic result" has statistical uncertainties ($b\bar{b} \ b\bar{b}$ final state):

[M. Frank, S.H., M. Mühlleitner, K. Radchenko, PRELIMINARY]

\Rightarrow for each point in the plane test an m_{hh} distribution statistically smeared

"Realistic" determination of $\lambda_{hhH} \times \xi_H^t$:

[M. Frank, S.H., M. Mühlleitner, K. Radchenko, PRELIMINARY]

"Realistic" determination of $\lambda_{hhH} \times \xi_H^t$:

[M. Frank, S.H., M. Mühlleitner, K. Radchenko, PRELIMINARY]

Hypothetical improvement in the efficiencies by $\times 2$:

[M. Frank, S.H., M. Mühlleitner, K. Radchenko, PRELIMINARY]

