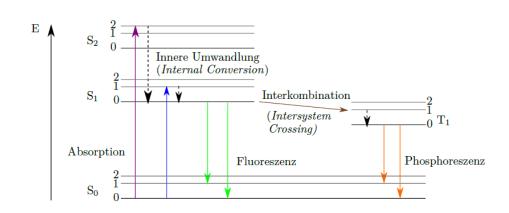


F-Praktikum Review Day

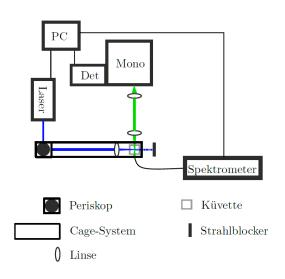
INF 19 Charakterisierung von Fluorophoren/Characterization of Fluorophores

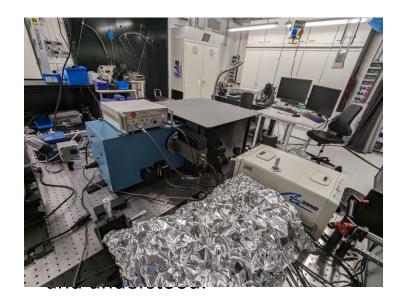
Malte van Heek & Tomke Glier


AG Rübhausen

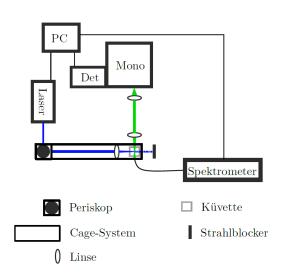
TSCPC Fluorescence

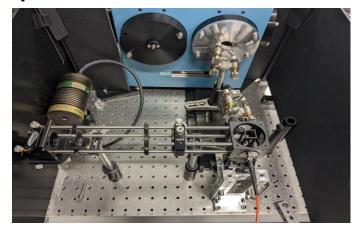
The experiment:


- Understanding the fluorescence properties of coumarin dyes
- Used experimental techniques:
 - Dilution Series
 - UV/Vis spectroscopy,
 - Emission spectroscopy,
 - Time-correlated single photon counting (TCSPC)

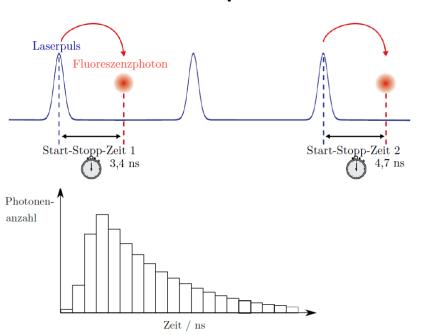


Experimental Time-Resolved Fluorescence Setup





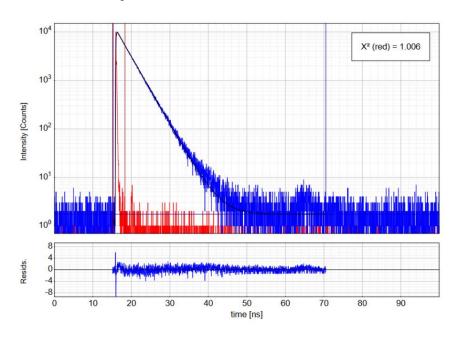
Experimental Time-Resolved Fluorescence Setup



The setup and all essential parts can be easily viewed, explained and understood.

Aim and precision

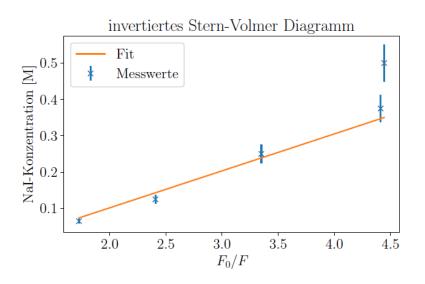
Measurement Technique



Time correlated single-photon counting (TCSPC):

- Live view on histogram development over time
- Students gain practical understanding of an important standard technique
- Precision: ca. 10ps; state of the art

Data Analysis



... is a key aspect of the experiment.

(1) Fit of the exponential decays directly in the lab and deconvolution of the instrumental response function (-> Fitting software provided)

Data Analysis

(2) Application of theories to the data after the experimental phase (Analysis phase).

E.g. linear fit to fluorescence intensity as a function of quencher concentration. Often deviations from linear behavior at high concentrations. Students have to evaluate and discuss this.

Key scientific learnings

Students learn:

- How to work in a chemistry room? (Sample preparation, Handling of solvents, etc.)
- How does a laser laboratory look like? (Applied Optics Group: Resonance, time resolved, nanofocus Raman Spectroscopy, time resolved Fluorescence)
- How to record meaningful datasets (inkl. reference measurements, instrumental response,...)
- How does single photon counting work?
- Application of theoretical models towards a fit function. From the simplest model to more complex ones...

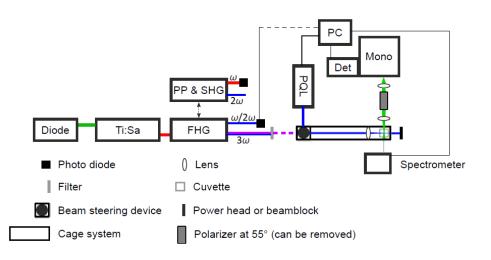
Grade your experiment

- Theory: different Laws and dependencies, interdisciplinary
- Setup: stretching over 2 labs (chemistry/optics), everything hands-on
- Data taking: on site-analysis and adjustment, references...,
- Analysis: Using different theoretical models to fit, non-model behaviour of samples

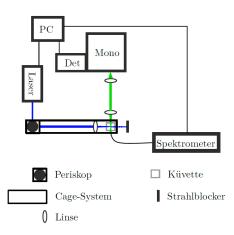
	Setup / experimental	Data taking	Analysis	Protocol
3	2	3	2	2-3

Link to modern research in the physics department

RESEARCH ARTICLE



Photoluminescence of Fully Inorganic Colloidal Gold Nanocluster and Their Manipulation Using Surface Charge Effects


Anna R. Ziefuss, Torben Steenbock, Dominik Benner, Anton Plech, Jörg Göttlicher, Melissa Teubner, Benjamin Grimm-Lebsanft, Christoph Rehbock, Clothilde Comby-Zerbino, Rodolphe Antoine, David Amans, Indranath Chakraborty, Gabriel Bester, Milen Nachev, Bernd Sures, Michael Rübhausen, Wolfgang J. Parak, and Stephan Barcikowski*

Our State of the Art Setup

F-Praktikum Setup

Same setup, with a simplified laser system. However, the full laser system is visible and presented to the students during a lab tour.

Strengthen the research/INF connection

Including Nanoparticles:

- Plasmonic
- Confined/semiconductor
- Solvent/ligand effects
- Size
- Scattering

RESEARCH ARTICLE

Photoluminescence of Fully Inorganic Colloidal Gold Nanocluster and Their Manipulation Using Surface Charge Effects

Anna R. Ziefuss, Torben Steenbock, Dominik Benner, Anton Plech, Jörg Göttlicher,
Melissa Teubner, Benjamin Grimm-Lebsanft, Christoph Rehbock, Clothilde Comby-Zerbino,
Rodolphe Antoine, David Amans, Indranath Chakraborty, Gabriel Bester, Milen Nachev,
Bernd Sures, Michael Rübhausen, Wolfgang J. Parak, and Stephan Barcikowski*