

Dr. Volker Heesen (Hamburger Sternwarte)

With contributions from Dieter Engels, Giulia Lusetti and Marcus Brüggen

Radioastronomy F-Praktikum experiment at Hamburg Observatory

- Learn radio astronomy basics
- Single-dish telescope
- Understand flux density, intensity, brightness temperature
- Simple dark matter detection experiment

© Dieter Engels

Short history of the KRT3

KRT3: Kleines Radioteleskop (3-m parabolic dish)

- Since 2015 in existence initiated by Dr. Dieter Engels
- Upgraded in 2019 to new telecope and software
- State-of-the-art data acquisition with PYTHON analysis
- 100 Students have performed the F-Praktikum experiment

Experimental setup on the roof of the main building ('Library')

- Take away points for students
 - low-noise amplifiers have to be directly at receiver horn
 - radio light consists of two circular polarisations
 - noise generator for absolute calibrations
 - antenna can be a simple mesh due to long wavelength

Preparatory work and radio continuum emission

- Students use telescope and
 - determine antenna pointing correction
 - fit Gaussian function to derive angular resolution
 - calculate system temperature and background radiation
 - measure map noise level

Screenshot of RadioUniversePRO

Analysis of spectral line data and HI line emission

- Preparatory exercise
 - use Doppler effect to calculate radial velocity
- Interactive PYTHON script
 - subtract baseline temperature
 - estimate rms noise from line-free channels
 - measure maximum velocity with error
- Calculate galactic rotation speed

HI line at 80 degree Galactic longitude

Main results of the experiment Galactic rotation curve

- Derive rotation curve of galaxy and compare with literature
- Discuss limitations due to low angular and velocity resolution
- Use assumption of baryonic matter distribution
- Derive galactic dark matter density

Current radioastronomy research

at Hamburg Observatory

- Radio interferometric observations
- LOw Frequency ARray (LOFAR)
- LOFAR station in Norderstedt as part of a European network
- Dark matter search with annihilating WIMPS
- Quantum Universe research area

