EXP18 Top-Quark pairs at the LHC

Alexander Paasch 10.05.2023, F-Praktikum Review

Bundesministerium für Bildung und Forschung

Top quark pairs at the LHC

Based on Physics V - Particle Physics

- ► Introduction to the Large Hadron Collider Most powerful particle accelerator
- \blacktriangleright Measure $t\bar{t}$ production cross section and the top quark mass
 - ► Highly topical in modern experimental particle physics

Data analysis with the CMS detector

- ► Real data from the LHC
- ► Hands-on python programming
- ► Add experimental view to abstract mechanisms (e.g. four-momentum, Feynman diagrams, object reconstruction)
- Modern statistical methods for big data analysis
- ► Duration of 2 3 days

Experimental Setup

Unterstand how the CMS detector works

- ► Modern particle physics detector
- ► Hands-on data analysis
- ► Learn the key concepts of the structure
 - ► Contribution from each sub-detector
 - ► Each track adds valuable information
- ► What are potential uncertainty sources
- ► How to deal with massive amount of data taking

Goal of the experiment

Analyse the top quark, the heaviest known particle

- ► How to distinguish the signal of interest from other processes
 - ightharpoonup Select $t\bar{t}$ events based on top quark properties
- ightharpoonup Measure the cross section of the $t\bar{t}$ process
- Measure the top quark mass
 - How to reconstruct objects and processes
 - ► How to infer parameters of interest using statistical methods (e.g. Gaus fit, error propagation, etc.)

Framework and tools

Event Display with ISpy

- ► Visualization of measured objects
- Study characteristics of $t\bar{t}$ events and similar processes

Analysis framework based on Python

- Provided by the organizers
- ► Students need to complete the code
 - ► Add code for the selection, data analysis and for tools like the calculation of the four momentum

Statistical and experimental methods

- ▶ Derive $t\bar{t}$ selection with simulation
 - Obstacles and advantages of MC simulations
 - Apply selection to data
- Check quality of the selection
 - Efficiency and Purity of each cut
- ► Calculate the cross-section with measured quantities
 - Error propagation
- Measure top quark mass
 - Perform gaus fit to reconstructed mass spectrum

Precision of main results

- ► Consider jet energy calibrations as representative example for systematic uncertainties
 - ► More would blow up the scope of the experiment
- $ightharpoonup t\bar{t}$ cross section of 158 pb: ~11% (stat)
 - ► Literatur*: ~1.3% (stat) and ~6% (syst)
- ► Top quark mass of 173 GeV: ~2% (stat) and ~5% (syst) GeV
 - ► Literatur*: ~0.2% (stat) and ~0.6% (syst)

(* Much larger dataset with more sophisticated methods to control uncertainties)

Current activities

- ► Top quark physics is a central activity of the LHC groups in Hamburg
 - ► CMS group at the Institut of Experimental Particle Physics (IExp)
 - ► CMS and ATLAS groups at DESY
 - Quantum Universe Cluster
- ► Many effort from the University Hamburg
 - ► World's most precise measurement: $m_t = 171.77 \pm 0.37$ GeV arxiv:2302.01967
 - ► Aiming for new energy regions: $m_t = 172.76 \pm 0.81 \text{ GeV}$ arXiv:2211.01456
- ► Learned methods are key skills for a bachelor and master theses in particle physics (e.g. Python skills, data analysis techniques)

Grade your experiment

Theory / preparation	Setup / experimental	Data taking	Analysis	Protokol
3	4	5	1	2

- ► In order to select the process the students need to many experimental aspects about the CMS detector and the theory
- ➤ The setup for the experiment is a prepared framework to analyze data based on Python. The students need to complete the program by adding their idea for the selections
- ► Key aspect of the experiment is to analyze the data.
- ➤ Students need to keep track of many aspect of the analysis and the detector to properly describe their studies
- ► Excellent preparation for all sorts of big data analysis in the field (bachelor thesis) or beyond