EXP7: Muon Lifetime

Praktikum Review Day

Daniel Bick

May 24, 2023

Scientific Content

- Muons
 - basic properties of leptons
 - ullet weak interactions / π -decay
- Cosmic ray muons
 - primary and secondary cosmic rays
 - origin of cosmic ray muons
- Particle detection methods
 - interaction of particles with matter, Bethe-Equation
 - scintillators
 - PMTs
- Statistical processes
 - exponential decay
 - coincidental background

Aim of the Experiment

- Primary goal: measurement of the muon lifetime.
- Emphasis on
 - 1 having fun experimenting!
 - 2 building a **logical setup** with NIM electronics (hands-on experiment).
 - 3 data analysis: fit muon lifetime from a set of single lifetime measurements.
 - 4 consideration of background.
- Experimental method quite old, but still in use (NIM will be 60 next year!).
- Great to be able to follow logic pulses (with scope).
- Nowadays, the whole setup could easily be programmed to an FADC. (could be an Praktikum-experiment on its own?)

3/7

Experimental Setup

Detector

- Three layers of plastic Scintillators read out with PMTs.
- Detect muons that get absorbed in the middle layer.
- ullet Detect e^\pm from muon decay.

DAQ

- Mainly NIM modules for logic circuit.
- Single decay times measured by
 - 1 chained, gated counters.
 - 2 TAC-ADC combination.

Data Analysis Method

Two types of analyses:

(Gated) counters

- weighted linear regression
- method explained in instructions
- spread sheet analysis

ADC Data

- list of decay times (channels)
- ▷ histogram
- ⊳ fit
- (very basic) python-template (script and notebook)

Key Scientific Results and Link to Modern Research

- Measured lifetime usually around 2 μs.
- Deviation from true lifetime due to muonic atoms.
- Different methods of background estimation (usually yielding the same results).
- Muons play a large role in every modern particle physics experiment.
- Detection with scintillators widely used (even NIM electronics still used).
- Data analysis methods: histogramming and fitting is a standard tool in many areas of physics.

Duration & Complexity

- Full day on Monday
 - 1.5 hours theory, focus on muons and detection
 - exercises to get to know (NIM)-electronics, oscilloscope, etc.
 - sometimes start of calibration (PMT thresholds, TAC time calibration)
- Most of the day on Tuesday
 - 1.5 hours of discussion, focus on exponential decays and analysis
 - rest of calibration, plugging together the experiment
- 2 hours on Friday
 - stopping the measurement, reading the counters, cleanup
 - start of python based analysis

Grade the complexity of the various aspects of your experiment; 1 is high and 5 low

Theory / preparation	Setup / experimental	Data taking	Analysis	Protocol
4 (1 w/o physics 5)	2	4	3	3 (usually 20+ pages)