

F-Praktikum Review Day

EXP9 - Beschleunigerphysik

Simple Accelerator for Learning Optics and the Manipulation of Electrons
SALOME

Motivation

Particle accelerators indispensable for fundamental research, medicine and industry. Large variety of possible applications: colliders for high energy physics, photon science (3rd and 4th generation light sources), medical imaging, radiation therapy, ☐ industry: market size ~ \$USD 3 Billion in 2022, anticipated to rise rapidly ⇒ Higher requirements to the academical education of the future accelerator physicists good theoretical background → starts in B.Sc.(e.g., Proseminar Beschleuniger, Physik V) → continues in M.Sc. (Accelerator I, Accelerator II) ☐ AND practical experience in the operation of the modern machines

Aim of the experiment	
	Provide a platform to learn and to extend knowledge of the basics of accelerator physics
	stand-alone machine - students are free to operate the device without disturbing the
	normal accelerator operations at DESY,
	Experiments on both introductory and advanced level of the accelerator physics course,
	Introduce theoretical concepts and experimental methods used in daily accelerator
	operation, e.g., trace space, linear optics, betatron oscillations, emittance,
	Perform state of the art beam-manipulation techniques, measurements and data
	analysis.

Experimental setup

- Built in close collaboration with DESY.,
- Using DESY-know-how, maintained by DESY
- Using same control system as DESY-accelerators
- ⇒ The same "look and feel" as accelerators used in the research

- Have possibility to learn how accelerator diagnostics work
- Learn to deal with modern accelerator control system
- Have possibility to estimate, discuss and correct impact of different systematic effects (power supply noise, misalignments, higher order magnetic multipoles, nonlinearities)
- May play and experiment with machine settings

Data processing and analysis

- 1) Initial data processing: diagnostics using YAG-screens →CCD images (raw data)
 - →Learn about image processing (video system developed by DESY)
 - →Discuss resolution, impact of intensity digitization, electronic noise,...
 - →Learn how to remove systematic effects
- 2) Parameter estimation: fit data to linear and nonlinear models to extract e.g., beam energy, Twiss-parameters, trace-space correlations, emittance, ...,...
 - → either use provided codes (it is discussed line-by-line what the code does)
 - → or write your own (~50% choose this, usually PYTHON)
- 3) Error propagation: statistical lectures (SL) proved very useful
 - → directly compare SL-slides with models used to identify correct error propagation law
 - → discuss covariance matrix of measured data
 - → calculate covariance matrix of estimated parameters (use provided or own code)

Summary

- Students get introduced to basics of accelerator physics and technology,
- Gain hands-on experience on a 'real' accelerator,
- Learn to measure important beam parameters, with same methods and techniques used at modern research facilities.

There is more to the story

EXP9 is often a starting point of a scientific career. Many students after this FP-experiment choose to do a bachelor-,master- and PhD thesis in the field of accelerator physics (many examples available)

Outlook

☐ Towards time-resolved experiments: a buncher cavity developed (bachelor's thesis),

installed and being commissioned (master's thesis)

☐ New experiment

"Cavities: deeper insight in the phenomenon of physical resonances" Can be offered starting WISE23/24