

EXP 12: Nachweiseigenschaften von Driftkammern/ Detection characteristics of drift tubes

F-Praktikum Review Day

Rosmarie Wirth

Specific points of reflection: Aim

Aim of the experiment

- What is the emphasis of the experiment?
 - → Understand how dirft tubes are used for muon tracking
 - setup system to detect muon in drift tube
 - → Calculate relation between drift time and muon radius
 - understand and setup a trigger system
 - digitize analog signal
 - develop code to analyze digital data
- How does it compare to state of the art experiments in the research field
 - → drift tubes are used as muon trackers in e.g. ATLAS/CMS

Overview

Steps to complete

- 1. Calibrate the HV with a FE55 source
- 2. Observe muon signals in the drift tube
- 3. Implementing triggersystem
 - → start first scintillator and PMT
 - → ADC and counter for first scintillator
 - → repeat with second scintillator
- 4. Test triggersystem and tune it
- 5. Setup FADC for overnight data taking
- 6. Start working on data analysis
- 7. Second long run of data taking
- 8. Analyse data with selfmade code

Overview

Steps to complete

- 1. Calibrate the HV with a FE55 source
- 2. Observe muon signals in the drift tube
- 3. Implementing triggersystem
 - → start first scintillator and PMT
 - → ADC and counter for first scintillator
 - → repeat with second scintillator
- 4. Test triggersystem and tune it
- 5. Setup FADC for overnight data taking
- 6. Start working on data analysis
- 7. Second long run of data taking
- 8. Analyse data with selfmade code

Triggersystem:

Overview

Steps to complete

- 1. Calibrate the HV with a FE55 source
- 2. Observe muon signals in the drift tube
- 3. Implementing triggersystem
 - → start first scintillator and PMT
 - → ADC and counter for first scintillator
 - → repeat with second scintillator
- 4. Test triggersystem and tune it
- 5. Setup FADC for overnight data taking
- 6. Start working on data analysis
- 7. Second long run of data taking
- 8. Analyse data with selfmade code

Specific points of reflection: Scientific Context

Scientific contest

- How is the experiment linked to the scientific bachelor program?
 - → Experimental Particle Physics lecture:
 - How to detect particles?
 - How do different particles interact with matter?
- Added value to the experiment to the lectures
 - Hands on experience
 - Seeing differet detection methods in action
 - How to measure drift times and deduce a relation
 - Analysis of own data
 - Probably first contact to object oriented programming

Specific points of reflection: Link to modern research

Link to modern research in the physics department

- What is the modern application of this technologies / experimental methods
 - → Muon tracking in different particle physics experiments
- In which group are these technologies / experimental methods applied
 - → Neutrino group (ship, LHC@SND), ATLAS/CMS
- What skills do the students gain which can be used in the research group?
 - → Working with oszilloscope, ADC, FADC
 - → Setting up trigger system
 - → Data analysis with python
- What is the difference between state of the art equipment and the F-praktikum setup?
 - → several drift tubes for track reconstruction,
 - \rightarrow cylindrical tubes,
 - $\rightarrow ...$

Grade your experiment

Each F-praktikum experiment accounts for 2.5 LP (= 2.5 SWS)

Students take:

- 1.5 2 days in the lab, + long data takings
- 1 2 days for data analysis under my supervison
 - → 3 full days of work on side

Theory / preparation	Setup / experimental	Data taking	Analysis	Protocol
2.5	1.5	1.5	1	2.5

Specific points of reflection: Experimental setup

Experimental setup (The black box)

- Do students have the possibility to assemble the setup?
 - \rightarrow Yes!
- Can they modify parameter? What is the largest systematic effect?
 - → Yes! Adjusting setup to see a signal at all/only noise.
- Do they learn how is the measurable "signal" obtained?
 - \rightarrow Yes. Focus on understanding the signal and physics to setup trigger system.

Specific points of reflection: Data analysis

Data analysis method

- Digitally taken data needs to be analyzed be the students
- Frame skript is provided
 - → itroduces the concepts of object oriented programming
 - → only provides a frame no functionality
 - → students follow steps to complete the code
 - → usually many discussions on data analysis, code structure, ... needed
 - → final code should run the full data analysis automatically