EXP19 - A simple dark-matter dectector with high-end acquisition system EXP19

A Review and Scientific Target

Dr Le Hoang Nguyen

Wavelike dark matter?

- Conversion of DM to detectable photon (Primakoff, Kinetic Mixing)
- Matching the Compton wavelength of the DM to the size of apparatus
- Low T_sys detection system, T_rec dominates
- \bullet Most effective setup is resonant cavity ($\nu < 10~\mathrm{GHz}$)

@Irastorza

EXP19: WISPDMX

$$\chi = 2.9 \cdot 10^{-15} \sqrt{\rm SNR} \left(\frac{t}{1 \rm s}\right)^{-1/4}$$

$$\left(\frac{T}{100 \rm K}\right)^{1/2} \left(\frac{\kappa}{0.1} \frac{Q}{50000} \frac{V}{447 \; \rm liter} \frac{\mathcal{G}_{\gamma'}}{0.3} \frac{m_{\gamma'}}{\mu eV} \frac{\rho_0}{\rm GeV/cm}^3\right)^{-1/2}.$$

The power gain from the 208 MHz Hera Cavity

Signal width

Physics motivates the acquisition system development

EXP19: Agenda

- 1. Physics define the experiment design.
- 2. Experimental practice.
- 3. Technology advancement influences to experiment.

The physics behind **Calibrations Data taking Data Analysing**

3-4 days

DM, WISPs, and fundamental of the components, dBm units

- Resonant frequency calibration (23 positions)
- Amplifier calibration
- ADC cablibration
- Working with high res data
- Obtain baseline results
- Basic method to search for new physics

- Student's 1st day presentation
- Discussion (up to 2 hours)
- Aspect in experiment design

- Taking calibrating data
- Analysis (simple and trivial)
- Systematic error estimation

- Taking science data
- Analysis (advance array manipulation)
- Increase the complexity depends on the student.
- Recall knowledge from day 1.

Calibrations

- Resonant frequency calibration (23 positions)
- Amplifier calibration
- ADC cablibration
- Working with standard devices in RF measurement.
- Terminology/jardon of the field.
- Calibration routine for each components (with explaination)

- Taking calibrating data
- Analysis (simple and trivial)
- Systematic error estimation

Spectrum near resonant and Fit

Data Analysing

- Working with high res data set
- Obtain baseline results
- Basic method to search for new physics

- Taking science data
- Analysis (> baseline level)
- Increase the complexity depends on the student (secretly injecting signal)
- Recall knowledge from day 1.

- Extracting ROI from Raw Data
- Data cleaning
- How to search for signal (background, noise power, and signal scan)

Proving the Dicke Radiometry equation

- Baseline analysis: signal scan in a single resonant.
- Advance analysis: broadband search, signal fit.

- EXP19 is usually their 1st or 2nd experiment.
- Consistent of 4 groups every semester (last sem, 5)
- Analysing part put their programming knowledge to practice
- Their data is not going to waste → HP modulation search, more data = lower noise

	Setup / experimental	Data taking	Analysis	Protokol
3	3	2	4	3

Following BA/MA works by EXP19 students

BRASS-p Simulation

4000 MHz bandwidth @ 625 Hz for BRASS-p