ILP5-Modern methods of laser spectroscopy

José Vargas Roco

Institut für Laserphysik Universität Hamburg

24th May 2023

Table of Contents

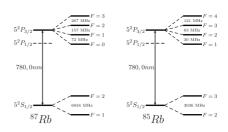
Overview

Experimental performance

General observations

Overview

Experimental implementation of laser spectroscopy on the D2 transition line of rubidium atoms in a vapour cell at room temperature.

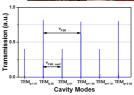


- probe the Doppler broadened linewidth (identify fine structure of D2-line).
- resolve the hyperfine structure of D2 line transition of rubidium atoms using saturated absorption setup.
- observe the effects of power broadening on the natural linewidth.

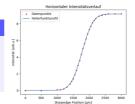
first experience on daily work in a atom-optic laboratory

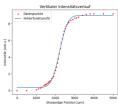
Experimental setup

D2-transition line Rb

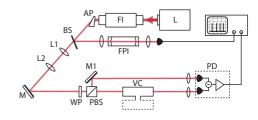

Day I: External cavity diode laser and cavity Fabry-Perot

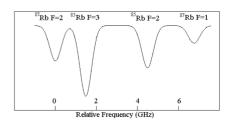
- What do they recognise on the experimental breadboard?
- To identify the main light source of the experiment: a commercial external diode laser at $\lambda = 780\,\mathrm{nm}$ wavelength. In this context: Types of external cavity. laser emission, multi-mode?
- FP-cavity as monitor for laser emission. To identity modes-class.
- To determine the beam waist via knife-edge method.


schedule


discussion and introduction to the exp. : 1.5hrs. visit other laboratory of the building implementation and measurements : 1-3 hrs. data analysis : rest.

Longitudinal and transversal

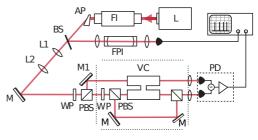



beam waist measurements

Day II: Absorption spectroscopy

- The concepts of linewidth, and Doppler-Power broadening are discussed, followed by the complete implementation of absorption spectroscopy of rubidium atoms.
- To identify the fine and hyperfine structure of Rb atoms. Important: with Doppler broadening, at room temperature it is not possible to resolve the hyperfine structure.
- Scanning through resonance one differentiates four Doppler-broadened profiles.

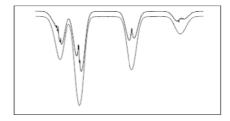
Experimental setup



Rb Doppler-broadened profile

schedule

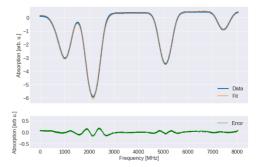
Day III: Doppler-free saturation spectroscopy


- Observing the hyperfine structure of rubidium atoms. In order to resolve this structure, it must be used a pump and probe beam in order to saturate the transition.
- ▶ To identify the real and cross-over transitions. crossover peaks originated by two permitted excited states $|E_1\rangle$, and $|E_2\rangle$ sharing the same ground state $|g\rangle$.

Experimental setup

schedule

discussion previous results : 1 hr.
implementation : 30 min.
measurements : 1-4 hrs.
data analysis : rest.



Rb Doppler-broadened profile and Doppler profile with Lamb dips

Day IV-V: Results and data analysis

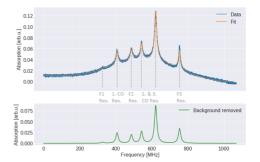
- A computer is available in the laboratory. Python for data analysis.
- To determine $\Delta
 u_{FWHM}$,

$$f(\nu) = \sum_{n}^{3} A_n e^{-\frac{(\nu - \nu_n)^2}{2\sigma_n^2}}$$
$$g(\nu) = \sum_{n}^{4} f_n(\nu) + B$$

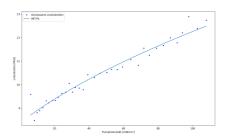
Exp. results Doppler broadening

$\Delta \nu_{FWHM}$	$\approx 500 \text{ MHz}$
Γ	$\approx 6 \text{ MHz}$
I_s	$\approx 1.6 \frac{\text{mW}}{\text{cm}^2}$

Day IV-V: Results and data analysis


To determine $s_0 = \Gamma/2$,

$$L(\nu) = \sum_{n=0}^{6} A_n \frac{s_0}{s_0^2 + (\nu - k\nu_n)^2} + B$$


ightharpoonup Finally one gets I_s through

$$\hat{\Gamma} = \Gamma \left(1 + \sqrt{1 + \frac{I}{I_s}} \right)$$

$\Delta \nu_{FWHM}$	$\approx 500 \text{ MHz}$
Γ	$\approx 6 \text{ MHz}$
I_s	$\approx 1.6 \frac{\text{mW}}{\text{cm}^2}$

Exp. results Doppler broadening

Determination of Intensity saturation

General observations

- It is important to update the instructions book. (English version, it could help)
- Incorrect citations and even not citations at all.
- Problems with properly using fit procedures; hence people ask for more time to hand in their protocols.
- Correct explanation of results plus uncertainties is missing.
- ... sometimes lack of motivation.

Importance of their work

Quantum simulator, and quantum computing machines needs frequency references.