

Energy Dependent Intrinsic kT tune Pythia & Herwig

Weijie Jin

Intrinsic kT model

Intrinsic kT:

The transverse momenta of the partons in the incoming colliding hadrons

 \rightarrow **Not calculable** in perturbative QCD

 \rightarrow Described by phenomenological models

In PYTHIA & Herwig :

Gaussian distribution of primordial kT

$e^{-k_T^2/\sigma^2}$

Relavant parameters:

In PYTHIA: **BeamRemnants:primordialKThard** (width in the two transverse directions: σ_x , σ_y) In Herwig: **ShowerHandler:IntrinsicPtGaussian** (width in the transverse plane: σ)

Primordial kT in partons \rightarrow pT(I+I-) in DY Smear of primordial kT $\sigma \uparrow \rightarrow$ low pT(I+I-) spectrum flattened

primordial ky 07 dp TCZ)

Tune Strategy

Underlying event (UE) parameters do not affect the pT(I+I-) spectrum much -> Fix the UE parameters in the intrinsic kT tune

We cannot achieve universal intrinsic kT tune at different energies -> Tune separately at different energies -> energy-dependent intrinsic kT parameters

pT(Z) (after kT tune) variation when changing UE parameters

 10^{1}

🔶 Data

- CP5 default

 10^{2}

103

 p_T^Z [GeV]

default value 1.8

Setup

pT(I+I-) XS measurements from hadron collisions

38.8 GeV pp (NUSEA), **62 GeV** pp (R209), **200 GeV** pp (PHENIX), **1.8 TeV** ppbar (CDF, D0), **1.96 TeV** ppar (CDF), **2.76 TeV** pPb (CMS), **8 TeV** pp (ATLAS), **8.16 TeV** pPb (CMS), **13 TeV** pp (CMS)

Tune range: pT(I+I-) under 10 GeV

Procedure:
1. Generate MC with different intrinsic kT parameters
2. Interpolate the pT(I+I-) bins as polynomials of the intrinsic kT parameters
3. Calculate the goodness of fit (GOF) v.s. intrinsic kT
4. Minimize the GOF -> tuned intrinsic kT parameters

Tuning results (Examples)

38.8 GeV pT(Z->II) in various dilepton mass ranges

5

Tuning results

Intrinsic kT width increase with energy Similar tendency for both generators

Hypothesis:

linear relation between **log(int-kT)** and **log(\sqrt{s})** same slope for both generators

Fitting results agree with the tuned parameters

Tuning results

At the same \sqrt{s} , tune the MC to data in various M(I+I-) ranges separately -> Intrinsic kT dependence on dilepton mass

weak / no dependence of intrinsic kT on dilepton mass

Summary

Intrinsic kT tune at various collision energies

Similar energy scaling behavior for Pythia and Herwig

Regardless of their different showering models

The fit cannot exclude the hypothesis of linear dependence of log(int-kT) on log(\sqrt{s}) with the same slope

Intrinsic kT versus M(I+I-)

The fit indicates weak/no dependence

-> different from the behavior in CASCADE

Next to do:

Look at the intrinsic kT tune under other UE tunes (e.g. CP1-4 in Pythia, default is CP5)

Ongoing investigation on Sherpa intrinsic kT tune

Slightly different intrinsic kT model (both mean and width of the int-kT distribution are tunable) Will it show a similar energy scaling behavior?

xs (pt) in 5 mass bins

4

Figure 2: xs (pt) for mass bin: 76-106 GeV

 Table 1: Information about tunes

	Pythia parameters	Tunes			
		CUETP8M1	CP1	CP2	CP5
	PDF	NNPDF2.3(LO)	NNPDF3.1(LO)	NNPDF3.1(LO)	NNPDF3.1 (NNLO)
	α_s - MPI	0.13	0.13	0.13	0.118
	α_s - hard scattering	0.13?	0.13	0.13	0.118
	α_s - FSR	0.1365	0.1365	0.13	0.118
	α_s - ISR	0.1365	0.136	0.13	0.118
	order	LO	LO	LO	NLO

6