

Beam test of sensors for a compact ECAL

Shan Huang (Tel Aviv University)

work in progress for the LUXE Collaboration

The 11th BTTB @ DESY Hamburg

LUXE ECAL Overview

Photons from Compton

LUXE: Laser und XFEL Experiment

- A "photon collider" (electron-laser or photon-laser)
- Energy: 16.5 GeV
- High energy density photon beam by laser

Physical goal: non-perturbative QED

- Observables departure from perturbative prediction
 - Breit–Wheeler pair spectrum
 - Compton photon spectrum (edge position)
- Challenges on positron detecting system:
 - high precision to verify the departure
 - large dynamic range (positron number/BX: 10-4 to 106)

LUXE CDR, EPJ ST 230 2445 (2021)

LUXE ECAL Overview

Detectors for et: 8 Tracker staves 1 Compact ECAL

electron-laser mode

LUXE CDR, EPJ ST 230 2445 (2021)

Sensors under test

Silicon sensor for test manufactured by Hamamatsu, connected with conductive glue

Questions to be answered by beam test:

- How do different sensors response to the electron beam/shower?
- Do different pixels on a sensor perform homogeneously?
- What happens when the electron comes in between two pixels?
- Is there cross talk between read out channels?
- How to calibrate the Monte Carlo simulation?
- ... and other questions need input from the telescope!

	SILICON	GAAS	TUNGSTEN
Pixel size [mm]	5.5×5.5	5.0×5.0	
Pixel number	16×16	15×11	
Thickness [um]	320	500	3,500
Samples under test	4	2	

Test layout

LUXE ISCALA TESTERAL

- Two planes close to DUT
- Not the ideal layout for resolution
- Hardware:
 - 6 Adenium planes
 - Sensors with or w/o W plates
- DAQ control:
 - EUDAQ/FireDAQ
- Alignment:
 - Corryvreckan
 - Extrapolation of broken lines
 - Telescope-sensor synchron./
 alignment is done separately

Data acquisition

6

- DAQ is orchestrated by the TLU
 - Possible trigger ID drifting
- ASIC keeps reading out data and stores ± 150 ns when gets trigger
- FPGA deconvolutes signal's temporal distribution into amplitude

Credit: Jakub Moroń (AGH)

Synchronisation

- Telescope's DAQ and the sensor's DAQ use different time "recorder"
 - telescope: time in ns
 - sensor: timestamp, one stands for 50 ns
- Events are labelled with TLU IDs, but they can be shifted in different DAQs
- The shift may be drifting over time

- Electrons are coming with different intervals
- The time interval between neighbouring events in the two DAQs should be proportional if they are synchronised
- One case of drift in the first 100 runs

Telescope alignment

- Procedure of alignment
 - Conducted by Corryvreckan
 - Pre-alignment
 - Alignment with the best tracks
- Tracking models:
 - General broken line (GBL)
- Tracking efficiency near 90%
- Indicators of a good alignment
 - Pull function
 - Residues smaller than 1 um
 - χ^2/n_{DoF} peaks at 1
- Extrapolation to the DUT using the last three planes

Sensor alignment

- When one electron hits on the sensor, there should be only one sensor pixel having signal readout
- When the electron comes in between two pixels, the sensor either has no readout ("dead" area) or has multiple readouts (signal sharing area), resulting in a dip
- The dips become clearer when applying amplitude cut
- The pixel boundaries are fitted with the dips to a precision better than 100 um

-10

-5

x_sensor [mm]

100

Homogeneity

 Select the events with one electron and one pixel response at the corresponding area

 Amplitude distribution fitted into a Landau-Gaussian convoluted function

 Amplitude (MPV) fluctuates over 1 ADC count, possibly due to differences on pixel wiring techniques, channel amplification, ...

Credit: Veta Ghenescu (Romanian ISS)

Signal sharing

- When an electron comes in between two pixels, it is possible that the sensor has multiple readouts from both pixels
- Select the events with one electron that hits on a specific stripe area
- Scan through two neighbouring pixels
- Check the two pixel's signal amplitude (if any) changing over stripes

Blue: left pixel

Red: right pixel

Green: sum of two pixels

Credit: Veta Ghenescu (Romanian ISS)

Traces in GaAs sensor

- Aluminium traces, a new method to connect pixels with the readout frontend, are used on GaAs sensor to make the sensor more compact
- The traces are bunched along *y*-direction and it is theoretically possible that fake signals could be induced in between traces
- Select the events with one electron that hits on a specific pixel centre
- Check the response of this particular pixel
- Check the response of all other pixels

Bonded towards readout system

Trace bunches along y direction

Cross-talk

- Aluminium traces, a new method to connect pixels with the readout frontend, are used on GaAs sensor to make the sensor more compact
- The traces are bunched along *y*-direction and it is theoretically possible that fake signals could be induced in between traces
- Select the events with one electron that hits on a specific pixel centre
- Check the response of this particular pixel (left)

Check the response of all other pixels (right)

Silicon sensor (>1 means multi. pixels):

■ On-pixel response: 99.7%

■ Off-pixel response: <6.20% (noise)

GaAs sensor:

■ On-pixel response: 94.4%

■ Off-pixel response: 8.65%

Summary & Outlook

- On beam tests are conducted on DESY-II TB24 for LUXE ECAL sensors
- We have successfully synchronised and aligned the telescope with the sensors under test
 - Multiple scattering considered (general-broken-line model) except the last two planes
 - Small residues, nice pull functions and χ^2/n_{DoF} distribution
- We are able to study the sensor's properties with the help of the telescope
 - Pixels in one sensor are generally homogeneous
 - Signal sharing is observed near the boundary of two pixels (around 250 um)
 - Proofs are found indicating different behaviours for sensors with and without traces
- Some useful software tools in GitHub
 - Corryvreckan LUXE-ECAL configures: https://github.com/shan-yamabuki/TBTelescope-Configure/tree/TB22
 - Corryvreckan module for data dumping: https://github.com/LUXEsoftware/TBTelescope-TrackingInfo
 - Telescope resolution: https://github.com/eutelescope/eutelescope/tree/master/processors/include/legacy
- Many thanks to the most kind and helpful DESY testbeam crew!

Thank you for your attention!

Back Up

Perturbative prediction:

Signal with "no" electron

- Signal observed when there is no track reconstructed in the telescope
- About 15% of all events
- Caused by strong requirement for tracking:
 needs all six planes to reconstruct a track

Uncertainty

- Quality cut
 - No obvious connection between track reconstructing $\chi^2/n_{\rm DoF}$ and intercept uncertainties provided by GBL track module
 - Propagated uncertainties do not consider the scattering at the last two telescope planes
- Uncertainty estimated by another code

Configuration		TB21	TB22
Vacuum	1 GeV	96.3 μ m	129.3 μ <i>m</i>
	3 GeV	39.5 μ m	48.1 μ m
	5 GeV	27.7 μ m	31.0 μ m
Air	1 GeV	119.9 μ <i>m</i>	151.9 μ m
	3 GeV	47.4 μ m	56.5 μ m
	5 GeV	32.9 μ m	36 .8 μ m

EUTelescope code for calculating uncertainty for a layout

https://github.com/eutelescope/eutelescope/tree/master/processors/include/legacy

Findings by the telescope

Left-Top: Electron profile with pixel (2, 1) having response, showing the three pixels are connected for readout

Possible effect from traces

Run 4484: GaAs sensor "A1"

- Tops: electron x/y-distributions with response from only one pixel
- Bottoms: same distributions with strong response from only one pixel
- Asymmetry can be easily observed on x and y directions: no dip on ydistribution without amplitude cut
- Possible cause: traces are bunched along y direction

Preliminary trace analysis

- Gap of event between sensor channels
- Different ADC distribution when shooting electron to the centre and to the edge
- We need to process more runs for higher statistics on trace analysis

60

100

100

ADC

ADC