News

- over-sampling vs. under-sampling
- added LCFIPlus vertex variables

 started to integrate LCFIPlus variables into my Marlin processor (as global variables and per track)

DESY.

Over-sampling vs. under-sampling

number of jets:

- b jets: 578844

- c jets: 645114

- light jets: 1932975

- so far: under-sampling of light and c jets performed to get same number of b,c and light jets for training and testing
- → total number of jets: 3 * 578844 = 1736532
- now: over-sampling of b and c jets performed to get same number of b,c and light jets for training and testing
- → total number of jets: 3 * 1932975 = 5798925
- also tested: sample weights in loss function

Results: loss & accuracy

epoch

epoch

Results: ROC curves

Name	Description	Normalization	Used by cat-
		factor	egory
trk1d0sig	d0 significance of track with highest d0 significance	1	A, B, C, D
trk2d0sig	d0 significance of track with second highest d0 significance	1	A, B, C, D
trk1z0sig	z0 significance of track with highest d0 significance	1	A, B, C, D
trk2z0sig	z0 significance of track with second highest d0 significance	1	A, B, C, D
trk1pt	transverse momentum of track with highest d0 significance	$1/E_{ m jet}$	A, B, C, D
trk2pt	transverse momentum of track with second highest d0 significance	$1/E_{ m jet}$	A, B, C, D
jprobr	joint probability in the r-phi plane using all tracks	1	A, B, C, D
jprobr5sigma	joint probability in the r-phi plane using all tracks having impact	1	A, B, C, D
	parameter significance exceeding 5 sigma		
jprobz	joint probability in the z projection using all tracks	1	A, B, C, D
jprobz5sigma	joint probability in the z projection using all tracks having impact	1	A, B, C, D
	parameter significance exceeding 5 sigma		
d0bprob	r,,	1	A, B, C, D
	b/c/q d0 distributions		
d0cprob	1,	1	A, B, C, D
	b/c/q d0 distributions		
d0qprob	product of q-quark probabilities of d0 values for all tracks, using	1	A, B, C, D
	b/c/q d0 distributions		
z0bprob	1 1 7	1	A, B, C, D
	b/c/q z0 distributions		
z0cprob	product of c-quark probabilities of z0 values for all tracks, using	1	A, B, C, D
	b/c/q z0 distributions		
z0qprob	product of q-quark probabilities of z0 values for all tracks, using	1	A, B, C, D
	b/c/q z0 distributions		
nmuon	number of identified muons	1	A, B, C, D
nelectron	number of identified electrons	1	A, B, C, D
trkmass	mass of all tracks exceeding 5 sigma significance in d0/z0 values	1	A, B, C, D

used as global variables

DESY. 5

Name	Description	Normalization	Used by cat-
		factor	egory
1vtxprob	vertex probability with all tracks associated in vertices combined	1	B, C, D
vtxlen1	decay length of the first vertex in the jet (zero if no vertex is found)	$1/E_{ m jet}$	B, C, D
vtxlen2	decay length of the second vertex in the jet (zero if number of vertex is less than two)	$1/E_{ m jet}$	D
vtxlen12	distance between the first and second vertex (zero if number of	$1/E_{\rm iet}$	D
	vertex is less than two)	-/ - Jet	
vtxsig1	decay length significance of the first vertex in the jet (zero if no vertex is found)	$1/E_{ m jet}$	B, C, D
vtxsig2	decay length significance of the second vertex in the jet (zero if number of vertex is less than two)	$1/E_{ m jet}$	D
vtxsig12	vtxlen12 divided by its error as computed from the sum of the covariance matrix of the first and second vertices, projected along	$1/E_{ m jet}$	D
	the line connecting the two vertices		
vtxdirang1	the angle between the momentum (computed as a vector sum of	$E_{ m jet}$	B, C, D
	track momenta) and the displacement of the first vertex	-	-
vtxdirang2	the angle between the momentum (computed as a vector sum of	$E_{ m jet}$	D
14.1	track momenta) and the displacement of the second vertex	1	D C D
vtxmult1	number of tracks included in the first vertex (zero if no vertex is found)	1	B, C, D
vtxmult2	number of tracks included in the second vertex (zero if number of	1	D
_	vertex is less than two)	_	_
vtxmult	number of tracks which are used to form secondary vertices	1	D
	(summed for all vertices)		
vtxmom1	magnitude of the vector sum of the momenta of all tracks com-	$1/E_{\rm jet}$	B, C, D
	bined into the first vertex		
vtxmom2	magnitude of the vector sum of the momenta of all tracks com-	$1/E_{ m jet}$	D
	bined into the second vertex		
vtxmass1	mass of the first vertex computed from the sum of track four-	1	B, C, D
	momenta		D
vtxmass2	mass of the second vertex computed from the sum of track four-	1	D
utumon	momenta vertex mass as computed from the sum of four momenta of all	1	P.C.D
vtxmass	tracks forming secondary vertices	1	B, C, D
vtxmasspe	mass of the vertex with minimum pt correction allowed by the	1	B, C, D
· minimopo	error matrices of the primary and secondary vertices	-	_, _, _
vtxprob	vertex probability; for multiple vertices, the probability P is com-	1	B, C, D
	puted as $1-P = (1-P1)(1-P2)(1-PN)$		

used as global variables

Results: loss & accuracy

- no overtraining
- accuracy ~80.5% in validation data

Backup

Next steps

- implement the new variables into my Marlin processor
- use new variables as features of charged jet constituents (per track and not combined for all tracks)?
- add more variables of LCFIPlus?
- start to integrate into iLCSoft, make it usable for others
 - meeting with Frank, Thomas & Uli
- testing over-sampling, other activation functions, ...

Results: loss & accuracy

- overtraining
- accuracy ~79% in validation data (before ~76%)

Results: confusion matrices

- better identification efficiencies for c jets and light jets (66% & 85% before)
- improved purity in all classes (before 88% for b jets, 68% for c jets, 74% for light jets)
- especially separation between c jets and light jets improved

ROC curves - comparison to LCFIPlus

Results: confusion matrices

- identification efficiencies ~80% for b jets & light jets
- c jet identification quite low (66%)
- especially separation between c jets and light jets should be improved

ROC curves - comparison to LCFIPlus

- slightly better performance for b jet identification vs. c jet background
- better performance for c jet efficiencies vs. b jet background below ~90% c jet identification efficiency
- worse performance in b jet / c jet identification vs. light jets (especially for c jets)

Performance LCFIPlus

Performance LCFIPlus

Architecture & data pre-processing

- classify jets into three classes: b jets, c jets & light jets
- ordering of input particles by (as applied in CMS)
 - impact parameter significance for charged jet constituents
 - shortest angular distance to a secondary vertex (by momentum if there is no secondary vertex) for neutral jet constituents
 - flight distance significance for secondary vertices
- if a value of a features is not available, the value is set to -10
- normalize input features to mean 0, std 1

Input features - global variables

- jet momentum
- jet transverse momentum
- number of charged jet constituents
- number of neutral jet constituents
- number of secondary vertices

Input features - charged jet constituents

- track momentum / jet momentum
- transverse track momentum relative to jet
- dot product of jet and track momentum w.r.t. jet momentum
- ΔR(track, jet),
- d0, d0 significance
- Z0, Z0 significance
- 3D impact parameter, 3D impact parameter significance
- track reconstructed in PV?
- is electron?, is muon?, lepton momentum relative to jet, lepton transverse momentum relative to the jet, lepton momentum / jet momentum
- kaon-ness of charged particles, track momentum fraction weighted with kaon-ness
- χ2/ndf

Input features - neutral jet constituents

- momentum of neutral jet constituent
- fraction of the jet momentum carried by neutral jet constituent
- ΔR(jet axis, neutral candidate),
- is photon?
- fraction of neutral candidate energy deposited in the hadronic calorimeter

Input features - secondary vertices

- SV mass
- number of tracks in SV
- ΔR(SV, jet)
- SV energy / jet energy
- SV energy
- cosine of the angle between the secondary vertex flight direction and the direction of the secodary vertex momentum
- 3D impact parameter, 3D impact parameter significance
- χ2, ndf

Training

- activation functions: relu / softmax (last layer)
- cross entropy loss
- optimizer: Adam
- regularization: batch normalization, dropout (0.1)
- batch size: 200
- learning rate: 0.0003
- learning rate is halved if validation loss stagnates for 10 epochs
- number of epochs: 100
- Xavier weight initialization

DESY. 46

Results: loss & accuracy

- accuracy ~76% in training & validation data
- epoch 89: learning rate halved
- train longer? decrease dropout rate?