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Preamble

The curation of data and the concept of the associated metadata are relevant for
all TAs in PUNCH4NFDI and, obviously, also very much relevant beyond our
own consortium for the whole of NFDI. A number of specific challenges arrive
with the focus on TA5, caused by the huge data streams and the needs for heavy
on-line processing. Solutions to address these challenges must not, however, be
designed in isolation of TA5 but must find the applicability also in other TAs, if
not now then certainly in the future. Vice-versa, concepts and implementations
in other TAs must be flexible enough to accommodate TA5 requirements in
the future. The aim of this document is therefore not to provide a general
and complete description of metadata in all fields of PUNCH sciences, but to
start a discussion of the relevant topics by highlighting some of the specific TA5
challenges. Consequently, the document is naturally biased towards TA5 needs
to convey our current thinking. That thinking will evolve with time as part of
a process including ongoing and future TA5 work and discussions with other
TAs. This document is a snapshot of this process.
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1 Introduction

Data are of little use unless there is knowledge about what the data represent. A
simple one-dimensional sequence of numbers could be a coded message or a mea-
surement of events during certain (unknown) time intervals. A two-dimensional
data set may represent a fundamental scaling law, like the expansion of the
Universe measurable from a correlation of galaxy distance and velocity, or a
ledger with the balance of customers. A three dimensional data cube may be
weather data as a function of location and time, or something else entirely. In
other words, data are only as useful as the appropriateness and completeness of
their “metadata” that provide a description of the data. But metadata describ-
ing a measurement or experiment should ideally not only describe a data set
and its relevant parameters, but they should also contain information about the
experiment itself, environmental conditions and, in particular, also any relevant
information about how and why certain information was selected and, ideally,
why other were not. Increasingly, metadata by themselves can become very
large as a consequence.

While the volume of data and metadata is increasing by our ability to mea-
sure more details and larger parameter spaces, we also need to increase our
ability to reduce these data in order to handle, manage and store these larger



volumes. This results in a loss of information, and the degree of information
contained in the metadata has direct consequences for the degree of data irre-
versibility. Task Area 5 is dedicated to develop methods to keep the degree of
information loss as low as possible.

This document is considered to be a “living” attempt to develop the best
concept of metadata in light of the challenges addressed by TA5. These concepts
are likely to differ between different case studies, but lessons from one area are
useful to overcome challenges in others. As we interact with the other task areas,
and as our work in TA5 progresses, new strategies and methods are developed.
This document seeks to capture the status of our thoughts, attempting to be a
reference for current and future discussions.

2 Concepts

The Merriam Webster dictionary describes metadata as “data that provides
information about other data”. This relational definition makes the distinction
between data and metadata context sensitive, which is not suitable for our
purposes. We instead adopt the following operational definition.

We call data everything that is fundamentally obtained from an experiment
or observatory, whatever format (binary numbers on tape, recorded analog sig-
nals, photographic plates). If data are lost, the information cannot be restored.
In that sense, these data already contain metadata, which we call level 0. Level
0 metadata describes and gives appropriate context to the raw data, for exam-
ple, when the data was taken, units in which numbers were recorded, etc. If
level 0 metadata is lost, the associated data becomes less informative since im-
portant context is missing, or entirely useless. Since level 0 metadata is deeply
connected with data, we will implicitly include when talking about data, and
only mention it explicitly when necessary.

We further distinguish between transient and persistent data (and associated
level-0 metadata). Transient data is not archived for later processing. Most
experiments search only for specific events in the stream of events provided
by the experimental apparatus. Storing all events would be uneconomic or
unfeasible (data processing rates are limited), and thus online algorithms select
which events are stored and the others are discarded. Transient data is data
stored in temporary buffers processed by these algorithms.

Before describing various technical aspects of metadata in the context of data
irreversibility we underline that they are instrumental to enable reproducibility
of results at different levels of processing.

3 Data irreversibility and metadata

3.1 Short overview of work in TA5

In the case of on-line filtering or processing, only a (limited) version of the
original data can be stored. Sufficient metadata then need to be provided on



how this selection process was implemented and executed. This is crucial to
evaluate the content of an archive, to present new choices of criteria for online
filtering or to judge the discovery potential in light of selections made. Therefore,
in addition to metadata that describe the basic properties of the data and the
instrumentation used, we need to provide additional metadata that describe the
first selection of data. Especially, we need to capture in some way a description
also of why or which data have not been captured. We need extra metadata
including the complete chain of algorithms needed to enable, in principle, the
reproducibility of selections.

In a dynamical life cycle of data (see Figure 1), the filtering process is not
static but dynamic. Any scheme must be flexible enough to accommodate dif-
ferent types and numbers of decision processes.
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Figure 1: Structure of TA 5 as dynamic life cycle of data

A detailed description of the tight interconnection between all work packages
(WPs) of TA5 has been presented in the corresponding section in the PUNCH
proposal [1]. Our concepts and developments aim at common solutions for pro-
cessing of dynamic metadata in the fields of PUNCH sciences and potentially
beyond. Here it is important to note one main distinction between high energy
physics experiments and astrophysical observations: In collider experiments of
high energy physics one can practically increase the number of metadata by
improving and repeating experimental setups. However, this is not the case for
astronomical observations where the observed object, the universe, is literally
out of control. One can only partially overcome this problem by turning to sta-
tistically large samples of objects. In contrast, in large data streams originating
from smart cities, for instance, a similar situation occurs, ie. the ”experiment”
cannot be controlled, but large samples are also not available. Developing tech-
niques for such situations are among the intended tasks for TA5, but not in
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Figure 2: General data processing graph for particle and astroparticle exper-
iments. Variations of the data flow and triggering scheme are possible. The
arrow width qualitatively indicates the data rate.

scope of this document.

3.2 Data reduction and the challenges for metadata

A generic data processing graph for a particle or astroparticle experiment is
sketched in Figure 2. Data is generated either by the experiment or its Monte-
Carlo simulation. The trigger step keeps only data of interest. The recon-
struction step converts low-level data into higher-level objects, for example, hit
coordinates and collected energy deposits into tracks or showers. It is followed
by analysis-specific processing and filtering, which may happen in parallel. Some
data is used to calibrate the reconstruction and the trigger.

In a general sense metadata describe other data thus supporting the F.A.L.R.
principles in a direct way. In the broad context of NFDI, metadata are informa-
tion (context) that describes an object such as a dataset as richly and complete
as possible. As data is further analysed, processed or related to other data,
metadata can only grow in time. In other words, additional layers of metadata
will be added, corresponding to the increasing levels of metadata as described
in Table 3.3. This table is one example of how to establish structured meta.
Another example is being used by NASA [2], as also outlined in section 5.4.

It is interesting to note that a section focusing on metadata and data prove-
nience has been established within the NFDI [3]. However, the general concept
of metadata implicitly assumes that metadata are assigned only to data that
are permanently stored. During the huge data reduction in real-time filtering
one can however distinguish between transient data typically constituting the
majority of processed data and a fraction of permanently stored data. The lat-
ter are those filtered and thus usually represent persistent data that should be
described by metadata.

In the context of time-critical data processing and the dynamic life cycle of
data we want to sharpen and extend this common concept of metadata:



Metadata characterise the data during the complete, dynamic process of data
taking, as sketched in Figure 2. Due to the intrinsic time-dependency of the
processing, one first has metadata describing the input or starting phase. These
metadata typically include status and bookkeeping information of detector sys-
tems participating in the data taking, e.g. the current time, how many sensors
are active at the start of data taking, or which set of calibrations is loaded, or
which telescopes are participating at an observation at which locations or fre-
quencies. Furthermore, as a result from online algorithms extra metadata will
be derived during the actual data taking. One important example is capturing
the triggering or filtering activities: How often has a specific trigger ’fired’ thus
selecting a reconstructed event in high energy physics or time-domain astronomy
to be stored permanently. What is the background level of noise-like signals,
and what threshold has been established and applied during the experiment
or observations? Such a threshold is likely to change within time, even during
the duration of an experiment (e.g. during sunrise and sunset, the ionosphere
changes rapidly, changing the level of Faraday rotation which may be monitored,
whereas the interstellar component can be expected to remain constant).

Another kind of metadata that could arise during processing and storing data
might be unwanted back-pressure when a system is not capable of processing
data in the required rate. The time indicating the onset of a phase of back-
pressure would therefore also constitute an example of relevant metadata. From
the viewpoint of the dynamic life cycle of data metadata are thus strongly related
to the process of (dynamical) filtering.

Additional important metadata are necessary to describe the logic or con-
ditions why specific filters or workflows have been chosen. This implies a map-
ping of the algorithms underlying the decision process executed in the context
of real-time data taking and the dynamic life cycle of data as outlined in sec-
tion 7. Deriving this from, for instance, a neural network is highly non-trivial,
especially in real-time.

This extended concept of metadata is therefore a consequence of the complex
interplay of our highly dynamic data model. These high-level metadata arise
when addressing questions such as: Why are other filters disregarded? Which
set of input data/conditions/archives triggered a specific filter selection? Can
we classify a trigger/filter as anomaly-based?

The layered metadata approach presented above should be able to address
some of these challenges, as a hierarchy of processing (and decision) steps can
be captured in principle. We discuss this further in the following.

3.3 Hierarchical dynamic metadata

Based on data (and level-0 metadata), higher-level data and metadata are built,
which form a natural data hierarchies. Metadata is of a higher level if its
construction depends on metadata of lower level or if it describes data of a
lower level, otherwise it is of the same level. With the level of metadata, the
abstraction level increases and the distinction between data and metadata can
become blurred as high level data directly depends on lower level metadata.



Data Content Sample content

level

LO A sensor measurement. Count level in CCD detector.

L1 Annotations referencing L0 CCD temperature and readout gain.

L2 Operation on Level 0/1. Photon flux reaching telescope.

L3 L2  annotations  ("meta- | Reference to calibration algorithm /
data”). ancillary data.

14 Operation on L2/3. Brightness of astronomical source.

L5 L4 annotations. Reference to astronomical catalog.

L4 Operation on L4/5. Source classification.

L5 L4 annotations. Reference to astronomical catalog.

L6 Analysis output (Operation Real-time follow-up announcement.
on L4).

L7 L6 annotations. Publication reference.

Table 1: A description of data levels suitable to a sample analysis of astronomical
data. Here, data and metadata levels are interleaved to emphasize that higher
level data can depend on lower level metadata.

In practice, low level metadata is often automatically created and centrally
processed to higher levels, and most analyses operate entirely on higher level
metadata.

As an illustrative example from astrophysics, Table 1 shows an hierarchical
view of data and metadata for optical astronomy. In this case data levels range
from level-0 to level-7. Initial data are from a telescope where an observation
results in a number of counts being registered in a pixel when reading out a CCD
array (LO0), which are recorded together with information regarding current ob-
serving conditions (L1). L0 and L1 data are then used to derive a physical
measurement (L2) through comparison with a sensitivity curve (L3), converted
into an intrinsic brightness (L4) after using a distance found in an external cat-
alog (L5), labeled (L4) based on a classification algorithm (L5) and, finally, this
information is communicated to an external receiver (L6) after fulfilling some
publication criteria (L7). From this viewpoint, data is not divided into ”data”
and "metadata”, but rather into levels containing data of increasing complex-
ity, and dependency on other sources of information. Information at each level
requires lower level to have existed in order to obtain meaning. Data hierarchies
can also branch, both in the sense of higher levels combining lower level data
from multiple sources (sensors) as well as different higher level processes using
the same lower level data. Data irreversibility emerges when some parts of this
hierarchy is not available for subsequent analysis. First, the capacity to store
lower level data might not exist. For example, it is conceivable that L1+ data
can be kept to indicate that measurement were made but not the raw obser-
vations themselves, or that a higher level analysis decides whether lower level
data is stored. Secondly, some measurements might never have existed. This



could be due to an observation being cancelled due to cloud coverage or having
been superseded (replaced) by a different target.

In a collider experiment, data are the raw event information, hits in the
tracking system, ADC counts in the calorimeter system, etc. In an astronomical
observation, they are ADC counts in a camera, the digitized amplitude trace
of a radio antenna, etc. Level-1 metadata would be reconstructed tracks in a
collider experiments, air showers in an astroparticle observatory, or a transient
or persistent signal in astronomy. Level-2 would be reconstructed decays in a
collider experiment, a light-curve in optical astronomy, or a dispersion track
of a pulsar or Fast Radio Burst (FRB) candidate in radio astronomy. Even
higher level metadata could be analysis results obtained, like histograms, or
catalogues of lower level objects that pass certain filters, or the statistics of
similar analyses on adjacent positions or epochs, giving means to decide the
reality of a detected signal. In this definition, the level is defined by the number
of intermediate processing steps and not necessarily comparable at higher levels
between different experiments. An experiment which requires more intermediate
steps for processing would introduce more intermediate levels of metadata.

However, it is also common that complementary experiments are performed
simultaneously during the same data-taking process. As a use-case, consider a
pulsar search observation with the a radio interferometer such as MeerKAT [4].
While searching for pulsars, a high-volume high-speed data stream from the
telescope’s digitiser is processed by a beam-former, two subsequent pipelines
work on the same stream at ~300 Gb/s. One pipeline searches for accelerated
binary pulsars, expecting very weak, Doppler-modulated periodic signals, while
a second pipeline looks simultaneously for single FRBs [5]. In case of an FRB
detection, a buffer containing the dispersed short-duration (few ms) signal is
replayed and fed into an imaging pipeline that forms an image to localise the
FRB. In parallel, the pulsar search pipeline searches a parameter space of binary
orbits to detect a signal. When something is found, a fraction of the data set is
marked for permanent storage, together with information on the candidate (and
anything additionally found). The metadata related to such pulsar searches are
already quite large in size (a few hundred GBs), and the sizes of the stored
items become a crucial consideration. One should therefore avoid duplication of
storage. In both cases of this example use-case, the same Level-0 data stream
is being considered and the two pipelines may even use the same formed de-
dispersed time-series for their analysis (constituting a Level-1 data product).
However, from then on-wards, there are two branches that describe a completely
different decision process: why was the FRB signal considered to be real? The
statistics used for a decision here is a vastly different one from that why a signal
is considered to be periodic and hence potentially a pulsar.

This use-case (for more details see also Section 4.3) highlights two different
aspects of our discussions and the methods that we need to develop. Firstly,
it is clear that our concepts must be flexible. Already in this rather specific
example, a degree of variation in the requirements is visible. This becomes even
more challenging, when for instance deriving schemes for astronomy or particle
physics experiments, or experiments in general and in simulations. Secondly,



we need to make decisions, how to handle different branches that have the
same Level-0 or Level-1 origin. It seems inadequate to keep copies of the same
low-level items, but in order to avoid duplication lower levels in our metadata
structure may be simply a reference, pointing to a single physical location of
those items.

Every commensal observation or experiment will face similar questions. In
the course of TA5, we will study various implementations already used in the
communities to offer adequate answers. It is unlikely that we find a single best
solution, but the propose of TA5 will be to provide a guide and eventually a set
of tools, depending on the actual requirements.

3.4 Recursive metadata

Another even more general method for describing the interplay between data and
metadata would to use recursive relations, where each record can link to other
records in a process with no definite end. This chain would contain references
to both data, metadata and algorithms.

The cause of a specific dataset, as in why a specific piece of record exists,
is not immediately obvious in e.g. a dynamical archive. [It might be said to
be obvious in a standard archive which records all output from an experiment.]
The cause can be seen as a union of several things, including ”physics” but also
experiment setup, software and ancillary data like weather. Data and metadata
are here even less distinguishable, and every record contains link to other parent
records.

Items such as dynamical filters and weather measurements would be seen
as data-records in different archives (e.g. filters_used_by_SKA DB, and the
structure of data viewed as a recursive tree based on pointers to different col-
lections rather than data — metadata — abstracted-metadata. A record in the
"SKA-filters” collection could then refer to a set of previous measurements that
were used for training together with a link to a specific ML algorithm. Meta-
data items would then frequently look like:  {’link’:’url_of_origin db’,
’collection’:’hash or set of elements in origin db’, ’type’: ’input
data’} , where 'type’ would be one of a limited set of known keywords like

“inputdata’, algorithm’, trainingdata’,’ con figuration’, ancillary’.

Based on a metadata file one could then in principle traverse this tree.

4 Use cases

4.1 Data from tracking in high-energy physics

In collider-based experiments, it is common to work almost entirely with meta-
data. A sketch of the LHCb data processing pipeline is shown in Figure 3. A full
detector readout at the revolution frequency of the LHC leads to rate of 4 TB/s,
which is infeasible to store permanently. Instead, raw data is processed online
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Figure 3: Current data processing pipeline of the LHCb experiment for proton-
proton collisions [6, 7]. Arrows indicate data flow, which are annotated with
event and data rates.

on GPUs and CPUs to form higher level objects such as tracks and even fully
reconstructed decay chains. Analysts define upfront which decays are of interest
and which subset of the full event information is needed for each analysis. Only
this information is written to the disk and the rest is discarded. This reduces
the initial rate by a factor 500 to manageable 10 GB/s through efficient filtering
and because high-level objects such as tracks and decays can be represented
with just a few numbers.

The most basic objects that analysts work with are typically particle tracks
in the detector. Tracks are metadata, a dynamic interpretation of the raw de-
tector data, the space-time points of hits in its tracking system and correspond-
ing energy deposits. The reconstruction software identifies point patterns that
match tracks of charged particles and assigns a momentum and charge based on
the curvature of the particle in a magnetic field, or an energy and direction, for
neutral particles that hit the calorimeter system. To assign the correct momen-
tum, the software will take the exact magnetic field into account, continuous
energy loss in the detector material, and detector alignment parameters, that
need to be regularly updated.

The reconstruction software identifies hit patterns that are consistent with a
particle moving in the magnetic field, but this identification is not perfect. Some
particles are missed. For muons that neither decay nor interact strongly with
the detector material, this is only a few percent or less [8]. Some fake tracks
are formed as well, which do not correspond to a real particle. This happens if
the software connects track segments of two unrelated particles, for example. In
the LHCb experiment, the fraction of fake tracks is non-negligible at very low
and very high momentum [9, 10]. If the tracking system is well calibrated and
understood, the chance probability that a track corresponds to a real particle
can be calculated and provided as additional metadata for filtering. An analyst
may use a hard requirement on this probability to select only tracks which are
very likely real particles, at a cost of some efficiency, or achieve higher efficiency
at the cost of admitting more fake tracks.

A detector also provides particle identification information for tracks. This
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may be based on energy loss, time-of-flight, the fact that the particle penetrated
shielding, and the presence or absence of showers in the calorimeter system. As
with the tracking, the identification is typically not perfect, and thus metadata
is assigned to the track which allows analysts to dynamically filter tracks. In
case of the LHCDb experiment, a neural network uses as input all various sub-
detectors to assign a probability that a charged track is originating from a pion,
kaon, proton, muon, or electron [11].

Tracks that almost meet in a common vertex (space-time point) are further
combined by the tracking software to identify a primary vertex, the point where
the beam particles collided, or to identify a secondary vertex, where a particle
decayed into other particles. These decay candidates are higher-level metadata.
The chance probability that unrelated tracks are merged in this way can again
be calculated and is provided as additional metadata for filtering. In LHCb,
many analyses work entirely on this level of metadata and most of the trigger
lines are based on reconstructed decay candidates [6]. A part of the LHCb data
is made available for the general public in this way [12]. As part of the LHCb
Open Data Project (see also section 5.5), scientists can interact with the LHCb
processing pipeline via a website interface. They select decays of interest and
then submit a request to extract and process this selection from internal storage
for download.

4.2 Data from the ground-based air-shower observations

Similar to the tracking in high-energy physics described in the previous section,
research in ground-based air-shower observations is based on metadata with
event being the most basic object. The event is the lowest possible high-level
interpretation of the data obtained from the individual detectors of an air-shower
instrument. These events, collection of individual detector signals, are subject
of further reconstruction which finds appropriate values of the shower impact
point into the detector, incoming direction, depth of the air-shower maximum,
the energy of particle initiated it, etc. Each of these quantities are essentially
metadata. The set of the metadata varies for different instruments.

The event identification from the initial, individual detector data, is not
straightforward due to the occasional coincidences of the background counts
appearing at the same time that can form a false event, or malfunctions of the
individual detectors of the instrument hampering the event identification be-
cause of the partial loss of the data. The reconstruction procedure attempts to
recognize the true events based on the best available knowledge about the instru-
mentation and performs reconstruction of the air-shower and primary-particle
parameters with the best available methods. The result of the reconstruction
procedure can be called metadata of the low level.

These low-level metadata are initial data for any high level analysis. With
appropriate description of the detector, the found energies are the initial data
for reconstruction of the cosmic-ray energy spectrum, the depth of tho shower
maximum for the mass composition analysis, and the incoming directions for
the anisotropy studies.
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The modern approaches to the air-shower data analysis attempt to use the
machine learning methods to improve reconstruction of some of the low-level
metadata and make new types of metadata available (such as the primary par-
ticle type). The entry information for some of these approaches is a mixture
of data and metadata to achieve the best performance. The identifies particle
type, which is also metadata, is a complex, non-linear function (formed by the
machine learning method) connecting a set of metadata or metadata+data to
the new type of metadata. This more generic approach to the metadata or-
ganization, in contrast to a simple leveling, can be a promising approach for
future.

4.3 Metadata in pulsar searches

As mentioned in Section 3.3, pulsar/FRB searches are done on data at Level-1,
and therefore have an additional layer of metadata. Primarily this consists of
the original fast-sampled time domain data from multiple telescopes which are
transformed to have frequency and time-resolution. The transformation is typ-
ically done by means of an FFT either on FPGAs or GPUs. The beamformer
will then compute multiple ”pixels” or beams on the sky that are much smaller
but are more more sensitive than the wide-beam from a single telescope in the
interferometer. Once the beams are computed, the beamformer further reduces
time and/or frequency resolution. Additional products maybe computed at this
time, e.g the four Stokes representation of the electric field sensed by the anten-
nas. At this point, one encounters several hundred to thousands of beams (or
independent data streams that contain both frequency and time information).
These are the beams that are subjected to FRB or pulsar searches.

At this stage, Level-1 metadata contains information on the beam position,
start epoch, time and frequency resolutions, band width, receiver frequency and
type of data (full Stokes, total intensity or any other Stokes). One can imag-
ine that additional information at this level can benefit future search pipelines,
such as RFI information, antennas that are masked (due to maintenance, mal-
function, or bad local RFI). Similarly, some details on the way FFT was done
(e.g so-called poly-phase filterbanks and what response was used, as this can
introduce leakages in other parts of the band).

The above data is then subjected to searches for periodic or transient astro-
physical signal both of which have the hallmark dispersion effect. However the
dispersion is not known apriori and therefore searches over a range of disper-
sion trials are carried out both for FRBs and pulsars. For pulsars, the search
for binary systems need a further trial in the acceleration and/or jerk dimen-
sion. Following this a FFT search and harmonic summing of the resultant
data is done, in order to identify the presence of a pulsar candidate. At this
stage the newly generated information like period, signal-to-noise ratio, disper-
sion/acceleration/jerk trial has to be captured. The presence of any residual
RFI (that potentially shows up as a candidate at multiple dispersion and accel-
eration trials) results in a large number of pulsar candidates, which were in the
past vetted by an expert, and recently machine learning schemes have been put
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in to use.

4.4 Concepts for related data from simulations

While most data are published in observational astronomy, and the FITS format
is widely accepted, the situation is very different for astrophysical simulations.
Here the open data policy is much less applied than in observations. While
some sub-communities publish their code and resulting data, many do not follow
such an open-access policy. The reasons are not necessarily proprietorial, but
the groups often lack the human resources to provide adequate code and data
documentation. Thus there is the general trend that extensive numerical collab-
orations tend to publish their codes, but smaller groups and single researchers
do to a lesser degree. During the last decade, the situation has improved in
making codes open access; however, publishing the resulting simulation data
rare in many sub-fields. Consequently, a shared culture of publishing data with
standards in formats and metadata provision still needs to be developed.

When publishing simulation results, the most apparent metadata to provide
is the code that has been used to produce these data. Usually, these codes
include an input file where the main variables are defined. Such input files in-
clude scientific as well as numerical information. For example, an astrophysical
variable could specify the used potential for modelling an astrophysical object.
An example of a numerical variable is the timestep used. Providing a compre-
hensive list of the astrophysical and numerical parameters is quintessential to
reproducing the results.

In high-energy physics, the detectors used to measure particles are static, i.e.,
their operating conditions do not change. n astroparticle physics, on the other
hand, the situation is different because important conditions can change within
a short time, such as weather conditions (clouds) or observation directions. This
is accompanied by enormous challenges with respect to simulation: much larger
simulation data is required to adequately account for these dynamic influences.
It is to be expected that the associated metadata can no longer be kept in
relational database systems due to their sheer size.

However, there are also technical aspects that should be contained in the in-
formation provided by the metadata. The metadata should contain information
about the computer used and the technical setup. This information is critical;
for example, the same code run with different precision can give different results.
Similarly, the number of cores used for producing the data is potentially essen-
tial. As many versions of a code exist in parallel, providing a version identifier
would be essential.

Usually, astrophysical data contain no personal data. However, for repro-
ducibility purposes, it might be necessary to include the name and contact
details of the person(s) who produced the results. In addition, it is also helpful
to provide the identity of the code developer(s). Some codes already contain an
automatic protocol for this information. However, providing this information is
often not the standard procedure.
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5 Previous approaches and frameworks

Here we present an overview of existing approaches and solutions related to
processing metadata. Although these references are a non-exhaustive set, they
summarise many of the lessons learned before and thus also form a basis for
future developments.

5.1 Data provenance

An example of a generic approach is DataCite’s Metadata schema [13], intended
to support citation and discovery of data in a broad range of research datasets,
without being customised to the needs of data-intense PUNCH sciences.

Astronomical use cases have been evaluated in the VAMPIRA project [14].
This analysis can serve as a basis to discuss the requirements, challenges, and
opportunities involved in designing both a tool for automated provenance gen-
eration and the associated provenance model.

Standards for protocols and data schemes defining the technologies behind
the Virtual Observatory are summarised in the article [15]. This includes also
the Table Access Protocol (TAP) enabling flexible and powerful dataset discov-
ery largely independently of their types.

The FITS (Flexible Image Transport System) format is probably the most
commonly used digital file format in astronomy [16]. This format consists of
multi-dimensional arrays including extra calibration information, together with
image origin metadata. The format has meanwhile been extended to also contain
different types of data, e.g. time domain pulsar data ("PSRFITS format”). A
list of officially registered FITS formats is mantained by NASA (see https:
//fits.gsfc.nasa.gov/fits_registry.html). In all cases, it is important to
note that all metadata are stored in a human-readable ASCII header as a table
of keywords and values.

Within the scientific community of lattice QCD the Metadata Archives at
Fermilab and the International Lattice Data Grid have been developed since
many years [17]. Here the description of metadata follows flexible XML-based
formats.

The design of the ATLAS Metadata Interface (AMI) 2.0 metadata ecosystem
is summarised in [18, 19] explaining also the underlying Metadata Querying Lan-
guage (MQL) - a domain-specific language allowing to query databases without
knowing the relation between entities.

5.2 Frameworks for Big Data

The Rucio framework for large scale data management [20] is well-tested for data
distributed across heterogeneous data centers at widely distributed locations.
Originally developed for the needs of the ATLAS experiments, it is utilised by
several other experiments in the field of PUNCH sciences. Rucio offers also
advanced features like dynamic data placement or automated data rebalancing
and extension modules which can access internal instrumentation data.
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Various experiences using Rucio in exascale scientific data management are
discussed in [21] focusing also on other experiments beyond the original ATLAS
community. Here the autonomous declarative way of handling dataflows, the
transparent handling of data incidents, and the capability to monitor the flows
in Rucio are emphasized.

In this context it is interesting to note that the CMS experiment at CERN
has decided to perform a transition to Rucio data management [22] for run 3
data.

An overview of the ESCAPE data lake including SKA Rucio ESOC is given
in [23]. This document describes the corresponding challenges of the pilot Data
Lake and presents both the continuous monitoring and the experiment-led tests
in detail.

Modern BigData technologies to store and access metadata for the ATLAS
experiment are addressed in [24] including the EventIndex application that was
entirely developed having in mind the usage of modern structured storage sys-
tems as back-end instead of a traditional relational database.

The performance of time-series databases is in the focus of [25] investigating
benchmarks for data management and data analysis systems of large-scale sci-
entific facilities. The authors show relevant benefits of relaxing the consistency
constraints for performance. Also the columnar format of databases in conjunc-
tion with data partitioning into multiple parts boosts corresponding ingestion
rates and leads to improved performance of data queries.

The overview of HEP Data Frameworks in [26] has concluded that it is essen-
tial for the HEP community to invest in the development of its data-processing
frameworks as fundamental building blocks for exploiting the available compu-
tational resources.

A general-purpose framework for big data processing has been introduced
n [27]. Thrill is based on C++ to improve performances and it uses arrays as
primary data structures to enable operations like sorting or combing of fields
and elements.

Another framework for large-scale data processing that should be mentioned
is Apache Spark. While Spark is written in Scala, it provides high-level APIs for
Scala, Java, Python and R. Spark includes different modules allowing to execute
data processing, streaming, SQL or machine learning workloads. Although it
is slightly inferior to the Message Passing Interface (MPI) in performance and
resource consumption in some tests on HPC clusters, Spark is better in fault
tolerance and easier to use [28]. Spark is often used in conjunction with Apache
Kafka (a distributed event streaming platform), which provides a powerful tool
to build complex data pipelines such as dynamic filtering.

5.3 PUNCH4NFDI

Recently, a comparative analysis of two metadata curation use cases from the
field of astroparticle physics has been presented [29]. The projects KASCADE
Cosmic-ray Data Center (KCDC) and German-Russian Astroparticle Data Life
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Cycle Initiative (GRADLCI) have been analysed regarding the requested func-
tionality, chosen data architectures, technical solutions and, especially, metadata
management approaches.

Over many years PUNCH sciences have pioneered scientific projects based
on open data. Some of these approaches are described in [30]. Here we shortly
summarise two projects related to open data from experiments at CERN or
HERA.

5.4 Data Processing Levels in NASA /EOSDIS

As outlined in [2], a hierarchy of basically 5 layers has been established in the
project EOSDIS being NASA’s Earth Observing System Data and Information
System. It is interesting to note that in that context level 0 products are raw
data at full instrument resolution. At higher levels, the data are converted into
more useful parameters and formats. Moreover, all EOS instruments must have
Level 1 products. This corresponds to the following scheme:

e Level 0: Reconstructed, unprocessed instrument and payload data at full
resolution, with any and all communications artifacts (e.g., synchroniza-
tion frames, communications headers, duplicate data) removed.

e Level 1A: Reconstructed, unprocessed instrument data at full resolution,
time-referenced, and annotated with ancillary information, including ra-
diometric and geometric calibration coefficients and georeferencing param-
eters computed and appended but not applied to Level 0 data.

e Level 1B: Level 1A data that have been processed to sensor units (not all
instruments have Level 1B source data).

e 2: Derived geophysical variables at the same resolution and location as
Level 1 source data.

e 3: Variables mapped on uniform space-time grid scales, usually with some
completeness and consistency.

e 4: Model output or results from analyses of lower-level data (e.g. variables
derived from multiple measurements).

5.5 CERN open data and preservation

The CERN Open Data portal [31] provides an access point to a growing range
of data produced through the research performed at CERN. The long-term
preservation of data and the corresponding open data concept at CERN have
been decided a decade ago, see e. g. [32]. In this context it is important to
note that data produced by LHC experiments are usually categorised in four
different levels:

e Level 1 data provides additional information on published results in pub-
lications, such as extra figures and tables
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e Level 2 data includes simplified data formats for outreach and analysis
training, such as basic four-vector event-level data

e Level 3 data comprises reconstructed collision data and simulated data
together with analysis-level experiment-specific software, allowing to per-
form complete full scientific analyses using existing reconstruction

e Level 4 data covers basic raw data (if not yet covered as level 3 data)
with accompanying reconstruction and simulation software, allowing the
production of new simulated signals or even re-reconstruction of collision
and simulated data

In order to validate workflows based on real-time data selections, level 4 data
are relevant. However the numbers of these raw-level data in open data are
small in comparison to more abstract data levels. One example of level 1 data
is a CMS open data in raw format [33]. Also OPERA detector data available,
e.g. http://opendata.cern.ch/record/10101.

Recently LHCb has described how to select decays of interest in LHCb Open
Data [12]. Using a website interface the corresponding evaluations are performed
essentially based on Level 3 data, corresponding to the aforementioned classifi-
cation.

It is interesting to note that the ordering of these four categories are to some
extend inverted and less flexible as compared to the definition in this document
in section 3.3.

5.6 Data preservation for the HERA experiment

Also the H1 collaboration at the HERA experiment at DESY has developed
methods to maintain the corresponding data, the related software and the doc-
umentation. An overview of these efforts and experiences after many years of
the end of data taking at HERA is presented in [34]. The challenges in the
transitions towards modern computing platforms and an object—oriented data
analysis framework are outlined. These lessons can also become relevant for
data curation in PUNCH sciences.

6 Requirements for metadata in PUNCH

Hierarchical metadata are tied to a distinct (atomic) observation: Astronomy
has been uniquely good in storing this kind of metadata. The FITS format
has played an enormous role, and it has been adapted to many more types of
astronomical data than the initialed foreseen usage for images.

Basic information in the form of metadata is for most observatories already
fairly complete and compact. Further standardizing this, e.g. by adding uniform
sets of generic metadata keys, runs a great risk of increasing storage sizes while
still not being specific enough to fully describe how an observation was made.
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6.1 WP 1 - Discovery potential and reproducibility

In the PUNCH sciences we face two types of scientific questions. In the first
one we start from an already established model of the world and measure some
model parameters, prominent examples are the measurement of the Higgs mass
in the context of the Standard Model [35, 36], or the modern measurements of
the Hubble-Lemaitre expansion rate of the Universe in the context of the flat
Lambda Cold Dark Matter model, see e.g. [37]. Searching for yet unknown radio
pulsars or for a yet unknown nuclear isotope falls into the same category, as we
know what we are looking for, so we carry out a parametric search in a (large)
parameter space. But there is also a second class of scientific questions, which
concerns the rare, unexpected and transformational discoveries. Here, the prior
model of the world states that the so far unknown object or phenomenon does
not exist and we don’t even know before the fact what the relevant parameter
space is and for what we should look out. From a statistical point of view
these questions are not parametric tests, but rather falsify the statement that
something does not exist.

Most of current activities in the PUNCH communities focus on the first
question and the unexpected discoveries often happen by chance and are mostly
driven by curiosity, or the lucky discoverers actually looked for something else,
like Penzias and Wilson when they discovered the cosmic microwave background
radiation instead of being able to further reduce the system temperature of their
horn antenna [38].

The enormous data streams of many of the experiments, observations, and
simulations in the PUNCH communities, don’t allow, for technical and economic
reasons, to store and save all data and especially the sustainable and responsible
use of resources calls for energy efficient algorithms and data storage. However,
sustainability might be in contrast to the scientific need for reproducibility and
the ability to make unexpected discoveries. In fact, the most efficient algorithm
to test a hypothesis or to measure a parameter would of course be a routine that
just returns a logical value (true or false) or a posterior probability distribution
for a parameter, but if nothing else is stored the result is no longer reproducible
and unexpected discoveries would become impossible.

The process of data reduction must therefore first of all be documented such
that it is transparent how the data where taken and how they were processed,
which forms a huge set of metadata (mainly in the form of instrument descrip-
tions, software packages), at all possible data levels. This is essential to even
call the data reduction scientific and not storing any of the information on these
two aspects would be a violation of the scientific method. Let us refer to that
as the essential description of the experiment or observation. This could still
allow to drastically reduce the amount of transient sensor data, either before or
after processing them.

Let us first turn to the aspect of reproducibility in the light of the first type
of a scientific question.

The above mentioned essential data are just enough to allow others to un-
derstand what was done. In an ideal experimental set up, that is actually almost
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all that we need to make it reproducible, as one could just repeat everything
that has been described. From that point of few, radical data reduction and
compression, e.g. by means of a trigger system, is possible and might be effi-
cient, as long as mainly questions of the first type are addressed. Here however,
it might be that rebuilding the experiment is expensive, which then calls for the
storage of intermediate data levels, such that the results can at least be partially
reproduced starting from a higher data level, which also implies that the very
first data reductions steps are highly trusted and have been extensively tested,
such that storing the lowest data levels is not necessary.

The situation is more complex for observations. An observation is a mea-
surement or a set of measurements of a system whose state we cannot control at
all. That is certainly the case is astronomy and cosmology, but, depending on
the experimental set up, it could also be the case in the laboratory. In such a
situation it is simply not enough to document the procedure, as e.g. any specific
supernova (SN) will never repeat again and the specific details can be different,
e.g. the line of sight differs from SN to SN, such that cosmic dust could absorb
some light from one direction and gravitational lenses could magnify the light
from a SN in another direction. Therefore, a key aspect here is to figure out for
each type of observation what data levels must be kept, such that an observation
can be reproduced in the sense of being checked by an independent colleague.

Also data that are not of direct interest to the scientific question, but affect
the performance of our sensors that target the science question at hand and
thus the quality of the senor data must be analysed and taken into account in
order to reproduce the science results. But as described above, in principle it
might be fine to run them just in an alarm mode where we flag (or even delete)
data that are not trustworthy, but for precision science we actually would like
to keep track continuously. The cadence of sensor readings that should be kept
must be adopted to the science question and the environment of the experiment
or observation at hand.

Let us finally turn to the question of the discovery potential. For that ques-
tion, experiments and observations are much more alike. While for a data intense
experiment, a super efficient filter system would not harm the reproducibility
(at least in principle — say all we would have noted down from LEP is that there
are only three lepton generations, we could decide to rebuild LEP or some ILC
and measure the Z peak again, in that sense reproducibility is not an issue), but
such a super effective filter definitely would get rid of any unexpected discovery.
An example of an unexpected discovery from astronomy are fast radio bursts
(FRBs), unexpected flashes of highly dispersed radio pulses with origin at ex-
tragalactic distances [39]. They have been discovered in archival data of the
Parkes radio telescope. It was found much later on, that at least some of them
seem to repeat, however, the details, especially the emission mechanism, are
still unclear. One of the reasons that the discovery was possible was that data
have been stored at high enough time and frequency resolution and sufficient
metadata of the observation existed such that one could verify that the event
found was not due to an yet unknown radio pulsar.

There are also examples of claims, which could not be verified later on, a
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prominent example is the claimed discovery of a magnetic monopole (postulated
first by Dirac [40]) on Valentine’s day in 1982 [41]. No similar event has been
found since and to the best of my knowledge it was never figured out what
actually caused the event. It is of course speculation, but perhaps a more
detailed storage of data at various data levels would have allowed to sort this
out. It is impossible to proof that it was not a monopole, all later searches
however where not successful and have put stringent constraints on the cosmic
abundance of such objects (see e.g. [42]).

To summarise, extensive filtering and reduction of data bears a serious threat
to the discovery potential and the reproducibility of new discoveries. On the
other hand massive filtering and data reduction, if applied thoughtfully, should
not hamper the reproducibility of parametric measurements. The storage of all
essential metadata is key for guaranteeing reproducibility, but it seems to us
that a general recipe for unexpected discoveries does not exist (or is unknown
to us).

6.2 WP 2 - Dynamic Filtering

We first discuss the concept of dynamic filtering in high-energy physics, before
addressing an example from astrophysics.

Dynamic filtering at high-energy physics collider experiments happens at
multiple levels. The PUNCH4NFDI project is supported by and linked to a
number of particle or nuclear physics experiments including ATLAS, ALICE,
CMS, PANDA, CBM, Belle II and LHCb. We discuss dynamic filtering pri-
marily in the context of the LHCb experiment, in order not to overload the
description of main concepts with fine-grained comparisons. Indeed, from a
conceptual point of view, the following approach is also followed also by other
collider experiments to a large extend.

In the LHCb experiment, dynamic filtering is applied by the high-level trig-
ger system. The trigger system selects events to store based on a high-level
physics interpretation of the event. For example, physicists may program the
system to select events which contain a class of b-hadron decay candidates. A
b-hadron decay candidate is metadata, it is a dynamic interpretation of the raw
event data, because it depends on detector calibration and alignment parameters
that change during the data taking and are continuously adjusted. Physicists
statistically define a list of decays of interest before run, but the actual filtering
is dynamic.

Dynamic filtering in LHCb grew out of the need to search for rare processes
of interest (signal) in a vast amount of uninteresting common events (back-
ground). The LHCb experiment employs a trigger system which consists of
hard- and software that analyses the temporary detector recording of the cur-
rent collision to find signal candidates. Collisions without interesting candidates
are discarded. A trigger decision depends on the static physics of the process,
and on the dynamic properties of the detector hardware and the beam (focus
and intensity), which vary over time. Because of the latter, the trigger is a
dynamic filter. The total event rate is dominated by the background rate, and
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limited by the computing resources of the experiment. The goal of dynamic
filtering is to optimise the signal signal rate for a given background rate.

To approach the optimum, the LHCb experiment moved away from static
hardware-driven trigger stages to dynamic software-driven trigger stages. The
LHCb experiment [43, 44, 45] is the first LHC experiment to eliminate the hard-
ware trigger completely, with large performance gains. The trigger efficiency for
certain hadronic b-hadron decays is roughly doubled, for example [46].

Traditional hardware-driven triggers were limited to event parameters close
to the capabilities of the detector hardware and only allowed comparably simple
decisions (e.g. select an event which contains a particle with large transverse mo-
mentum or a large energy deposit in the calorimeter). Software-driven triggers
operate directly on the physical interpretation of the raw event. They form a
decision based on fully reconstructed particle decays (e.g. accept the event if it
contains a reconstructed decay in a given mass window). The decision is based
entirely on metadata. Hits in the detector are combined into tracks, which are
further classified as particle candidates based on the particle identification data.
Particle candidates are further combined to decay candidates. The association
of hits with particle tracks and everything that follows is metadata.

In summary, the LHCb experiment filters events based on static rules (which
rarely change) that directly describe particular classes of decays. The filtering is
based entirely on metadata (decay candidates), which is extracted by a software
online from the raw event data, and calibration and alignment parameters that
are continuously updated online [6]. The latter are needed to obtain the sharpest
peaks in the reconstructed invariant mass distribution of the decaying particle,
which in turn boosts the background rejection factor.

In astrophysics experiments, dynamic filtering is mostly occurring in time-
domain astronomy, but also during astroparticles experiments or when operating
gravitational wave detectors. Staying with the usecase introduced above in
Section 4.3, the background level in pulsar or FRB search experiments is usually
highly dynamic. It consists of an extraterrestrial background and one of man-
made, so called "radio frequency interference” (RFI) signals. The trigger level
for single bursts will have to be raised, as the RFI level increases. Similarly, in
the search for periodic pulsar signals, an increasing number of positions in the
maintained list of identified candidates will be occupied by RFI signals. In such
a case, RFTI signals will need to be identified and removed or, alternatively, the
length of the candidate list will need to be extended. Either method represents
a dynamical adjustment of the applied filters that need to be recorded in the
metadata.

6.3 WP 3 - Dynamic Archiving

While metadata is routinely distributed with the data, the interpretation is of-
ten nontrivial. Experiments producing large data volumes will endeavour to
minimze this through compressing metadata to a minimal set of parameters
describing the state of the detector and any processing pipeline carried out.
When processing archived data it will therefore be necessary to also have access
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to tabulators / transformation methods which can ”translate” metadata. There
needs, in principle, be enough encoded information to rerun the full pipeline
from decision to carry out observation, scheduling, experimental sequence, pro-
cessing and selection. In other words, the purpose of dynamic archives is to
give the scientists an opportunity to re-investigate archival data after having
obtained additional or new knowledge, guided by the available metadata of the
stored data sets.

In order to stay with the FRB usecase once more, after the first FRB was dis-
covered in archival data [39], different archives were re-analysed and re-evaluated
to discover more FRBs. This was not immediately successful, but the lessons
learnt from those archival studies, and in particular from the information pro-
vided by the metadata, led to changes in the experiments and then eventually
to new FRB discoveries [47].

6.4 WP 4 - Scalability

For efficient scaling of these metadata one needs to consider:

e Drastic increase of metadata volumes: For reproducibility of online se-
lections one needs to know the underlying software chain running the
dynamic filtering. Also constant updates of quality measures of archived
data are expected to increase the actual size of metadata. In future astro-
physics experiments like SKA, base metadata for an observation can be of
the order of PB.

e Flexible data models: The data base scheme of SQL is typically good for
complex queries while it is not designed for (rapidly) changing metadata
nor for huge data volumes. Data volumes beyond 100 TB are suited for
non-SQL schemes. The PostgreSQL format tends to have some advan-
tages with respect to performance in comparison to SQL. Also a mixture
of NoSQL and SQL databases could be an option, as for the ATLAS exper-
iment using the Rucio framework. PostgreSQL is probably a good choice
for structured persistent metadata. In case of large data, Greenplum may
be used. This is an MPP architecture based on PostgreSQL. A logical
database in Greenplum is an array of individual PostgreSQL databases
working together to present a single database image. As a non-SQL alter-
native, Cassandra may be considered — a distributed, wide-column store,
NoSQL database. For transient (dynamical) metadata, a NoSQL database
such as MongoDB is probably preferred.

Both of these requirements have not been investigated at the scale anticipated
for some future PUNCH experiments. Up to now, the size of metadata even
for large datasets of LHC experiments tends not to exceed the scale of GB.
Therefore we also have to analyse the scalability of existing solutions towards
the metadata sizes well beyond TB to come to consistent solutions.
Referencing the pipeline of decisions, their underlying data and all related
dependencies of software needs to be transferred into efficient and scalable work-
flows. The requirements for the scalability of metadata processing are actually
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complemented by those from allowing reproducible filtering workflows. Tech-
nically, we have to investigate the performance of the most relevant workflows
including large sets of metadata. The objective is the processing of the latter
implemented such that the runtimes and usage of resources are still acceptable.
The scheme for referencing the components recursively is also outlined in 3.4.
Ideally, the metadata representation of decisions should be based on pointers,
zero-copies of data and scalable approaches.

6.5 WP 5 - Evaluation and validation of instrument re-
sponse & characteristics

Similar to section 6.2 main concepts are exemplified here for the LHCb detector
and astrophysics workflows. For the former, they can basically also be gener-
alised to other high energy collider experiments. The LHCb detector response
is validated and calibrated with measurements in special control channels and
using simulation [8]. As part of the instrument response we discuss the trigger
system, the tracking system (including the muon tracker), the particle identifi-
cation system, and the calorimeter system.

The LHCb trigger system consists of trigger lines. Most trigger line selects
candidates for a particular decay channel, e.g. BY — J/9% K+ or DY — K7~
A few lines also select minimum-bias events with at least one reconstructed
track with reduced rate (only every N-th triggered event is written to storage)
or look for generic signatures of potential exotic decays (particles with high
transverse momentum). The efficiency of a trigger line could be calculated with
the minimum-bias line, but the small fraction of events with b- and c-hadron
decays makes this approach unfeasible. The TIS-TOS method is used instead
[48]. An event is classified as Trigger on Signal (TOS) if the trigger objects (the
reconstructed tracks associated to the selected decay of interest) are sufficient to
trigger the event. An event is classified Trigger Independent of Signal (TIS) if it
has been triggered entirely by objects not associated with the decay of interest.
Some events are classified as TIS and TOS simultaneously. The efficiency of the
trigger line can be calculated from these numbers [48] using data and is validated
on simulation. A small bias remains since small residual correlations between
TIS and TOS cannot be completely avoided, but the bias can be reduced to
sub-percent level by counting the TIS/TOS events in kinematics bins of the
decay candidate.

The efficiency of the tracking system for charged particles is studied with
muons from the decay J/¢¥ — ptp~ , which has naturally low background.
The LHCD tracking system consists of several sub-detectors, which are partially
redundant. The efficiency of individual sub-stages is measured with a tag-and-
probe technique; a partially reconstructed track (without using data from the
sub-detector) and a fully reconstructed track are combined into a J/ candidate.
The number of J/1 is obtained from the mass distribution of the candidates
with a fit of a signal-and-background mixture model. The resolution of the mass
peak of J/v¢ candidates is reduced when using partially reconstructed tracks,
but still good. The efficiency of the sub-stage is the ratio of the number of J/
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candidates obtained with two fully reconstructed tracks divided by the number
obtained with a partially reconstructed track. The total tracking efficiency of
the tracking system is the product of the efficiencies of the sub-detectors.

On a lower level, tests of hit efficiency, resolution, occupancy, and radiation
damage are also performed for each sub-detector. Hit efficiencies and resolutions
are obtained by extrapolating tracks reconstructed without a segment of a sub-
detector into this segment. One then either tests whether the expected hit is
present or measures the distance between actual and predicted hit location. The
low-level tests are performed with muons or hadrons with large momentum to
minimize multiple scattering.

The momentum resolution obtained for tracks from charged particle is also
based on the observed width of the mass peak of J/¢ — putp~ decay candidates.
The momentum scale is calibrated using large samples of J/¢ — pTp~ and
BT — J/¥ K™ decays. The central locations of the peaks are compared to world
average values. The primary vertex resolution is studied by randomly splitting
sets of tracks which point to the same primary vertex and reconstructing the
vertex with each set. The resolution is computed from the difference of these
two vertex locations.

Regular alignment of the LHCb tracking system is important to maintain
high vertex and momentum resolution. Re-alignment is necessary after moving
sub-detectors during maintenance, after temperature variations, when the dipole
field of the LHCb magnet is reversed about twice every month, and when the
central tracker is opened or closed (the central tracker is opened when the LHC
beams are defocussed to avoid sensor damage). The spatial alignment of the
tracking detectors is based on optical and mechanical surveys and on the study
of residuals of reconstructed tracks. A model of the effect of a misalignment on
the residuals between predicted and actual hit locations in the tracking system is
fitted to thousands of tracks simultaneously. These fits were initially performed
with the Millipede method [49] and now with an algorithm [50] that correctly
takes the effect of the magnetic field, multiple scattering and energy loss into
account.

The response of the ring-imaging Cherenkov detectors, used for particle iden-
tification, is calibrated with decays that can be identified well based on their
topology alone [46]. Suitable decays contain a vertex that is sufficiently sepa-
rated from the primary collision vertex to reduce combinatorial background, for
examples, the decays K2 — 777~ and A° — pr~. The pure samples of pions,
kaons, and protons are then used to measure the identification efficiency and
misidentification rate. On a lower level, the Cherenkov angle resolution and the
photoelectron yield are also monitored with well isolated tracks.

The LHCb calorimeter system consists of four components. The first two
components, SPD and PS, are separated by a thin lead layer and consist each of
a plane of scintillator tiles. They are used to distinguish between electrons and
photons. The last two components are segmented traditional electromagnetic
(ECAL) and hadronic calorimeters (HCAL). The SPD and PS are calibrated
using the distinct peak in the charge response distribution that originates from
minimum ionizing particles. Their efficiency is monitored with reconstructed
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tracks of particles with sufficient momentum to reach the calorimeter system.
The ECAL calibration is performed in two steps, an initial calibration is fol-
lowed by an iterative refinement. The initial calibration was original performed
with a test-beam and uses a built-in LED system now. Relative calibrations
between cells are improved similar to tracker alignment by identifying and ad-
justing consistent offsets between cells over many hits. Calibration constants
are also improved by reconstructing 7° — v decays, in which a photon in a
cell to be calibrated is combined with a photon from another cell. Calibration
of the HCAL is done during bimonthly beam-stops, when two 137%s sources
are moved through the calorimeter with a hydraulic system. During data tak-
ing, the performance of ECAL and HCAL is monitored with the built-in LED
system.

Also in astrophysical experiments, calibration and monitoring of the system
parameters are essential. The additional complication — and essential difference
to most high energy experiments — is that the Universe cannot be controlled. We
can only watch the event, but we cannot repeat its processes. At the same time,
the conditions of our experiments do change in terms of our local surrounding. In
optical astronomy, the reflection of sunlight at megaconstellation satellites will
provide a disturbing unwanted background signal. In radio astronomy, RFI may
become severe, such that our methods of detecting celestial signals are thrown off
and made useful. It is therefore important to continuously evaluate and validate
the proper working conditions of our equipment and experiments. Usually,
this can only be tested properly during the observations, so that corresponding
information must be captured in metadata.

6.6 Metadata and workflows in the dynamic life-cycle

There are three fundamental considerations that one can make first.

a) There is currently no standard methodology for how to handle missing data,
i.e. where no metadata exists. What we have discussed would be a
tiered metadata structure: observation-metadata, instrument-metadata,
observatory-metadata etc. If no observations are found one instead de-
termines whether an instrument/pipeline/algorithm was active and an
observatory even open. This would require facilities to produce and share
this metadata, and it would require standards for how to link metadata,
i.e. how one would go from a level to the one above or below.

b) It is often hard to interpret metadata from different instruments for non-
experts. For efficiency, different instruments use different fields that can
capture the required information as compactly as possible. The two ways
of making this data accessible by non-experts would be: Either add a lot
of standard fields to produce common standard values Or distribute soft-
ware together with metadata which can translate the core metadata into
common properties (target, field, energy sensitivity etc). The first path
has the drawback of ”polluting” stored data with additional fields which
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might still not be sufficient for all information, while the second creates
requirements for a full additional software component to be distributed
and maintained.

c) The domain of irreversibility directly ties selection algorithms (whether real-
time ML or human selection based) to metadata. Data which is lost (not
saved) cannot be recreated, but we should be able to rerun the selection
algorithm that was active at that time on e.g. simulated data.

Rather than constructing a list of metadata fields that should be present
(which will always be incomplete),we could focus on two conceptual /standardization
questions:

e How should different metadata tables reference each other? Could be
directed to lower or higher level archives, or to e.g. follow-up observations.
Can we suggest some scheme where a metadata query would automatically
follow this link and gather all metadata pertinent to a query?

e How should metadata reference software, either to be used for parsing the
metadata itself or for recreating a pipeline? In principle we would like a
metadata file to itself suggest the software (including a specific release/tag)
which should be used to parse it correctly and e.g. use in a larger scale
off-line analysis.

In the following we described the implied requirements.

6.7 Extrarequirements from anomaly detection workflows

Anomaly detection is a method used for identifying rare or unusual signals in
large data streams. Applications can be in physics measurements or in the
operation and maintenance of physics instruments. In the latter case, it is
also known as predictive maintenance, i.e. the detection of deviations from the
usual behaviour well before a measurement instrument is in a critical mode of
operation.

The result of the anomaly detection can be a tag of the physics event or
a warning message indicating problems with the measurement device. These
results will presumably become part of the regular data streams, like physics
data or monitoring data.

Additional metadata may however be interesting to store. If an anomaly de-
tection algorithm continuously updates its behaviour in order to learn from from
the regular data flow it will be useful to track the internal parameter settings
of the algorithm. Another example are indicators which activated the anomaly
detection. Specific signatures of the data or of the instrument behaviour may
only be available in the real-time data stream and not in the data recorded
during normal operation.

Different logging frequencies and metadata data volumes can thus be ex-
pected for anomaly detection. These should be evaluated in specific applica-
tions, so that general aspects can be identified and implemented in metadata
concepts.
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6.8 Metadata storage size

Storing all metadata for all observations would quickly fill up any storage space.
A hierarchical, linked metadata scheme allows a piece of information to only be
stored once (e.g. configuration details of a real-time pipeline) and then refer-
enced to by every observation which made of it use this. When data is hold
in computer memory, such a scheme is typically already realized, but typically
not for (meta)data on mass storage. Similarly, relying on software to interpret
metadata allows the stored data to be compressed (at the expense of readabil-
ity!).

The amount of metadata to be stored can be reduced with online algorithms,
in which only a high-level representation of the raw data is stored. An example
is the online processing system of the LHCb experiment. In particle physics,
at the fundamental level, the detector measures hits (space-time points) in the
tracking system and energy deposits in the calorimeter. The raw event consist of
this lowest level of information and is typically very large. A tracking software
combines hits and energy deposits into tracks and particle candidates, which
require less storage than the raw event.

The raw event was previously stored offline (at least temporarily), since the
tracking software requires calibration parameters that had to be computed in
an offline step. The LHCb experiment now moved to a pure online system,
in which a computing farm performs the event interpretation online on GPUs
and CPUs, and combined with calibration parameters that are also produced
online in parallel. The pure online approach has become feasible through the
availability of cost-effective computing hardware and large bandwidth networks.
The online system removes the necessity to store the raw event for standard
analysis, so that large temporary storage solutions are no longer required.

In this context it is also interesting that developments at the ALICE exper-
iment have also lead to significant data compression based on entropy encoding
[51]. A lossless ANS entropy encoding is employed as the last stage for all detec-
tors during online reconstruction. Among the involved detectors, the compres-
sion in the Time Projection Chamber is the most elaborate one, involving several
steps, some of which are not lossless. In particular, a clusterizing algorithms
converts the raw ADC values to hits. Hits of tracks not used for physics analysis
are removed, while the remaining hits are processed by entropy-reduction steps
such as the track model compression, as described in detail in [52, 53, 54].

7 Towards the dynamic data life-cycle

We have described concepts for highly dynamic metadata arising in the context
of irreversible data processing workflows. Our main focus is on data-intensive
experiments within the PUNCH sciences, however most of the aspects in the
concept could be generalized towards other fields of science also processing high
data rates.

Based on raw data, higher-level metadata is build, which forms a natural hi-
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erarchy of metadata. Metadata is of a higher level, if its construction depends on
metadata of lower level, otherwise it is of the same level. A hierarchical, linked
metadata scheme would allow a piece of information to only be stored once and
then referenced to. A corresponding metadata scheme must be flexible enough
to accommodate different types and numbers of decision processes. Several so-
lutions based on flexible data schemes beyond traditional relational database al-
ready exist, as also summarized in section 4. Moreover, we have described (use)
cases where limitations for existing data processing levels will be too restrictive
for future extended layers or branches due to more complex workflows. Cap-
turing the workflows of dynamic filtering/archiving shall finally enable as much
reproducibility and validations as possible. Therefore, metadata must include a
complete description of all algorithms involved in the pipelines/workflows.
Following-up this concept, we will investigate some of the aforementioned
schemes for metadata focusing on their scaling and flexibility. Furthermore, an
implementation of a data base structure is foreseen reflecting requirements from
future workflows. It will also be interesting to quantifying fractions of data
(filtered /persistent vs. raw/transient) in some use cases, also characterising the
size of corresponding metadata. Finally, the definition of an interface to the
Science Data Platform and corresponding coordinations with TA4 are planned.
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