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2. Adding of definition and scope as introduction

1 Challenges in data irreversibility
Michael

The rapid increase in both data rates and data complexity leads to sev-
eral challenges soon to be seen throughout society as we enter the ”Internet-
Of-Things” era, where large sets of ”sensors” will transmit data upon which
autonomous ”actors” will react. However, the substantial increase of power
consumption for storage solutions, e.g. cloud computing, requires the investiga-
tion of resource-optimised data sets with maximal relevance and minimal redun-
dancy. Decisions will need to be made, often in real-time and without human
intervention, which information to keep or how to compress it with calculable
loss. Loss will be inevitable and mostly irreversible, while off-line analyses or
emerging additional information will feed back and dictate modifications of the
on-line processes (“dynamic filtering”).

A common challenge is the identification of a signal in huge data streams.
The challenge does not only arise from the amount and velocity of the data,
demanding on-the-fly decisions on huge data volumes, but also because the
filtering needs to be robust. Real signals must not be missed, while large false-
alarm rates will overwhelm the system downstream. In some experiments, e.g.
in astrophysics, one may want to trigger measurements with other instruments,
which can be costly if false signals are followed up too often.

Often it is useful to distinguish between expected and unexpected signals.
Sometimes, the experiment may need to be designed to look for and isolate
a signal that is expected. In contrast, discovery sciences make some of their
largest progress by experimentalists stumbling over serendipitous signals that
had not been seen before. Ideally, an experiment should be designed to deal with
both, even though a varying noise background, or the presence of significant
”intereferers” may need to be accounted for. Large data volumes and rates
make this increasingly more challenging.

In any case, the decision process of rules and methods for the extraction
of pertinent information out of huge data streams in real-time will need to be
updated frequently and captured as important metadata. Hence, the impact
of the information loss must be traced and gauged in order to allow drawing
adequate conclusions from archives, which will no longer be static but dynamic
entities.

Against this background, this document aims to develop a concept of how
to tackle the identification of highly complex (multi-parametric) signals in huge
data streams. As work in TA5 progresses, the contents of the document will be
reavaluated and modified.

1.1 Data irreversibility and dynamic metadata

In the case of on-line filtering or processing, only a (limited) version of the
original data can be stored. Sufficient metadata then need to be provided on
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how this selection process was implemented and executed. This is crucial to
evaluate the content of an archive, to present new choices of criteria for online
filtering or to judge the discovery potential in light of selections made. Therefore,
in addition to metadata that describe the basic properties of the data and the
instrumentation used, we need to provide additional metadata that describe the
first selection of data. Especially, we need to capture in some way a description
also of why or which data have not been captured. We need extra metadata
including the complete chain of algorithms needed to enable, in principle, the
reproducibility of selections.

In a dynamical life cycle of data (see Figure 1), the filtering process is not
static but dynamic. Any scheme must be flexible enough to accommodate dif-
ferent types and numbers of decision processes.

Figure 1: Structure of TA 5 as dynamic life cycle of data

A detailed description of the tight interconnection between all work packages
(WPs) of TA5 has been presented in the corresponding section in the PUNCH
proposal [1]. Our concepts and developments aim at common solutions for pro-
cessing of dynamic metadata in the fields of PUNCH sciences and potentially
beyond. Here it is important to note one main distinction between high energy
physics experiments and astrophysical observations: In collider experiments of
high energy physics one can practically increase the number of metadata by
improving and repeating experimental setups. However, this is not the case for
astronomical observations where the observed object, the universe, is literally
out of control. One can only partially overcome this problem by turning to sta-
tistically large samples of objects. In contrast, in large data streams originating
from smart cities, for instance, a similar situation occurs, ie. the ”experiment”
cannot be controlled, but large samples are also not available. Developing tech-
niques for such situations are among the intended tasks for TA5, but not in
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scope of this document.
In a general sense metadata describe other data thus supporting the F.A.I.R.

principles in a direct way. In the broad context of NFDI, metadata are informa-
tion (context) that describes an object such as a dataset as richly and complete
as possible. As data is further analysed, processed or related to other data,
metadata tend to grow in time. In other words, additional layers of metadata
will be added, corresponding to the increasing levels of metadata Add ref-

erence to
metadata
document.

1.2 Requirements for future astrophysics applications

Astrophysics deals with two different types of large data volumes, observations
and simulations. Improved technology, larger number of detectors, digitizing
wider bandwidth, or sampling larger portions of the sky at different parts of
the electromagnetic spectrum all lead to many more data. The data are useless
until they are analysed, understood and often matched or compared with other
types of data. Often they are compared to simulations, which are becoming
huge in volume in their own right.

Even when ignoring the even the data management aspects, the data (obser-
vational and simulations) need to have description of how they were created or
derived. Data format that allow a comparison or inter-operational aspects have
been established in astrophysics for a long time. What is needed is a scheme
that allows to identify and describe the filtering mechanism. This needs to be-
come part of the dynamical archive, so that the user can formulate meaningful
queries and influence future experiments by being able to modify the filters.

Astrophysics requirements therefore exist on the experimental side and the
archiving side. For the experiment, technology to cope with the data, to apply
the filters and to save the identified fraction of the data together with adequate
meta-data. The meta-data by themselves are likely to have a considerable size,
and data and meta-data need to be digested into an archive that is flexible
enough to accept entries that may adapt their structure from experiment to
experiment.

1.3 Requirements for high energy physics experiments
Andreas

Efficient data selection in high energy particle and nuclear physics also neces-
sitates more complex decisions in significantly less time intervals. Technically,
that challenge can be partly solved by further developing software-based trig-
gering processing detector data in parallel where possible. Recently the LHC
experiments ALICE and LHCb have demonstrated that triggering in software
enables the selection and storage of specific complex events of interest.

However, more generic searches targeting at unexpected, anomalous signals
require more flexibility in the triggering process. Trying to store anomalous
signal would be also a change of the established paradigms of a hierarchically
structured scheme of triggers. A classification of non-signal like events as op-
posed to statistical backgrounds will probably require a sophisticated use of
neural networks in online workflows.
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Another option supporting complex and more advanced selection of events
can be related to information from external data bases. Querying such archives
efficiently could allow to trigger on dedicated signatures that might be related
to other results of potentially new physics from related analyses of PUNCH data
volumes.

2 Technologies for data-intensive processing

The sorting and selection of detector data at the earliest stages is a crucial as-
pect of real-time data analysis. To this end, key algorithms for real-time data
reduction, including massively parallel sorting and selection algorithms have to
be optimised for their usage in massively parallel systems. As an example clus-
tering, i. e. the reconstruction of localised features requires generic, massively
parallel clustering algorithms that are relevant in several fields of PUNCH sci-
ences. As an intermediate step, both algorithms and underlying data structures
have to be further developed to meet the requirements of the necessary scalabil-
ity. Corresponding design principles should therefore lead to data and/or task
parallelism with a focus on performant algorithms and data structures.

Furthermore, new trends based on the processing of data streams in FPGAs,
programmed with input from machine learning are promising technologies for
developments.

2.1 Requirements for massively parallel processing
Vadim

Ongoing and future experiments in astrophysics and high energy physics will
produce data that should be treated as Big Data in terms of the 3 Vs: volume,
velocity and variety. The volume refers to the amount of the produced data.
But not only the volume is challenging, the speed with which data are being
generated, and as a result, the speed with which the data should be processed
as well as its complexity require new approaches in data reduction.

The IT-infrastructure used for the big data handling is thought to be hor-
izontally scalable at least because of the large volume of the data to be si-
multaneously processed. A paradigm that allows the computing environment
to be scaled out in a nearly unlimited way is Massively Parallel Processing
(MPP). The main feature of this architecture is that the computing nodes do
not share memory or any other resources interconnecting over a high-speed net-
work (Fig. 2). This imposes a fundamental limitation on the range of problems
and used algorithms, especially those related to machine learning. While many
parallel algorithms are efficient within an infrastructure with shared memory,
they suffer from scalability problem when being applied in MPP. Since the com-
munication between nodes in MPP is a principal bottleneck, in order to leverage
this computing model, the problem should be divided into independent and non-
iterative tasks where data exchange between nodes is as little as possible.

The MPP architecture is already widely used in the enterprise sector, with
different requirements and goals though. In future scientific experiments, how-
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Figure 2: Parallel computing models: (a) distributed memory (MPP), and (b)
shared memory. Credit: [2].

ever, the amount of generated data is expected to be larger (e.g. up to 3
Exabytes/year in the SKA experiment) and the data reduction is much more
sophisticated.

The sorting and selection of detector data at the earliest stages is a crucial
aspect of real-time data analysis. To this end, key algorithms for real-time data
reduction, including parallel sorting and selection have to be optimised for their
usage in MPP systems. Both algorithms and underlying data structures have
to be further developed to meet the requirements of the necessary scalability.
From a practical point of view a design that helps avoiding data races also for
workflows with asynchronous execution is needed. Technically, synchronisation
at different levels of threads and blocks is possible and discussed below.

In this context, clustering is one of the approaches that can be utilized for
object detection and selection in the incoming data stream, i.e, allowing in
fact data filtering, which is relevant in several PUNCH-related science fields.
There are a variety of traditional clustering algorithms, such as K-Means, EM-
Algorithm, DBSCAN, BIRCH, Spectral Clustering, etc. Depending on the data
set structure and specific task they can achieve good results as long as the data
set is small enough, i.e., when it fits into the memory. The traditional clustering
algorithms thus suffer from the scalability problem and do not meet the needs of
big data clustering. Parallel clustering algorithms divide data into chunks being
distributed over the nodes where they are simultaneously processed. A parallel
algorithm succeeds if the individual tasks are not-interactive and independent
as much as possible.
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Recently, there have been attempts to expend the use of different clustering
algorithms in MPP.

The most popular clustering algorithm, because of its simplicity, is k-means.
While this is an iterative algorithm, which makes it challenging to apply in MPP,
several attempts have been made to obtain high performance by eliminating the
iteration dependence. In [3] it is proposed to estimate the iterations by sampling
of the original data set to obtain only some subsets to use their centers to
cluster the original data set. Another approach is suggested in [4], where the
iterative k-means processes are run concurrently with multiply centroid groups,
then low-quality processes are pruned and new ones are started, keeping the
best solution at the end. This and Other parallel approaches for the k-mean
algorithm are mostly based on the MapRedice distributed computing model,
which is also an MPP-like model. An interesting clustering algorithm for peer-
to-peer unstructured networks, i.e. nothing to share, based on K-medoids and
k-means algorithms has been introduced in [5].

Another popular clustering algorithm is DBSCAN. A MapReduce-based
variation of this algorithm is proposed in [6]. More advanced implementations
of the DBSCAN algorithm have been proposed in [7, 8] and [9]. An implemen-
tation with nothing sharing based on MPI is proposed in [10], where the authors
also adopted the Single Instruction Multiple Data (SIMD) technique.

There are many other clustering algorithms that can be parallelized within
the MPP paradigm (e.g. [11]). An overall vision of the current state of this
topic is provided in a recent review [12].

In should be noted that the MPP paradigm has various implementations.
The most straightforward and therefore popular, especially in the enterprise
area, is the MapReduce technique [13]. A similar technique is developed in
the Spark framework [14], though the MapReduce technique itself does not de-
pend on a specific software or hardware platform. Spark is widely used because
of its high-level interface allowing to perform big data analysis with minimal
efforts, i.e. it is petty user-friendly. The cost of that usability is a lower perfor-
mance compared to other tools with a lower-level interface such as the Message
Passing Interface (MPI). In some cases, when dealing with non-optimized ML
algorithms, especially including matrix algebra, programs written with the MPI
outperform Spark by tens of times in speed and memory consumption (see, e.g.
[15, 16, 17] and [18]).

2.2 Multi-core CPU
Vadim

In recent years the scaling of transistors on microchips tends to fall below the
increase predicted by Moore’s law. Conversely, compute capability has been sig-
nificantly enhanced by adding more CPU cores (the multicores architecture) or
using GPUs (see below). Modern multi-core CPUs are optimised for low-latency
access to cached data sets. They provide a control logic for out-of-order and
speculative execution. It is interesting to note that performance gains through
vectorisation using Single Instruction Multiple Data (SIMD) instructions, and
parallelisation using many-core CPU architectures often require less significant
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changes to the code base as would typically be required for porting algorithms
to GPUs. The latter often requires specialized code redesign and further op-
timisation, as also outlined in the subsequent section. The SIMD instruction
model also implies that vetorised instructions on modern CPU SIMD cores are
executed in lockstep. Therefore no synchronisation barrier is needed, because
all elements of the corresponding vector finish processing at the same time.

2.3 GPUs and hybrid architectures
Andreas

Modern GPUs are optimised for data-parallel, high-throughput computa-
tion. An efficient usage of GPU acceleration is crucial for many (upcoming)
experiments in PUNCH sciences. Evaluations of real-time reconstruction at
LHC detectors [19] have shown e.g. that high compute loads for parallelis-
able tasks are ideally suited for GPUs, so that they are a quite general option.
Achievements in GPU-accelerated processing and reconstruction in big data ex-
periments are documented in a number of publications, e. g. ALICE [20, 21] or
CBM [22] and LHCb [23]. Also in the context of A Common Tracking Software
(ACTS) the utilisation of GPU-based Kalman Filter for Track Fitting has been
investigated in [24].

Because the performance gain of a GPU is mainly based on the ability to run
thousands of threads in parallel, this limits considerably the amount of memory
available per thread compared to the CPU. Technically, a typical GPU is added
to a server by means of a PCI-e card, and the corresponding bandwidth of the
bus is limiting the possibilities of an efficient use of the GPU. In a versatile
trigger approach, where GPUs can be used for several applications, the use
of the GPUs needs a careful planning in the trigger software to optimise the
performance of the system. Therefore, algorithms aiming at an optimised load
balance have to be developed, deriving the decision where to execute a certain
algorithm on the current and predicted load of the nearby CPUs and GPUs. A
promising approach to further optimise the trigger performance is to make use
of the possibility to invoke hard/software co-design issues based on the new type
of CPUs which include GPU or FPGA features. The load balancing algorithms
will then be augmented to include new hardware to dynamically optimise the
performance of this new compute platform.

It is interesting to note that models of Single Instruction Multiple Threads
(SIMT) can describe workflows on GPUs. In this case threads are used instead
of vector registers. GPUs consist of multiple processing elements, each with
multiple SIMT GPU cores. As a result, not all threads are processed in lockstep
leading to the requirement of a corresponding synchronisation instruction.

2.4 FPGAs
Arno

Field Programmable Gate Array (FPGAs) have become everyday tools in
modern digital processing systems. They provide real-time and highly parallel
processing of large data streams. High-speed serial links are directly integrated
in the device in order to receive and transmit the data efficiently. The total data
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throughput rate can easily reach more than 1 Tbps and is thus a main advantage
of FPGAs compared to CPU or GPU based systems. The basic data processing
is performed by logic elements and digital signal processors. System-on-chip
devices also integrate an ARM processor and possibly high-bandwidth memory.
Dedicated FPGAs targeting machine learning applications include AI engines
for fast vector processing attached to local memory which may be connected to
a network-on-chip.

In detector and measurement systems, FPGAs are usually employed right
after the signal digitisation stage where the full raw data is available. Typical
tasks are conventional digital signal filtering, anomaly detection, feature ex-
traction and triggering of interesting events. For particle physics applications,
clustering and tracking algorithms are e.g. implemented on FPGAs as part
of the feature extraction. With the processing resources available in modern
FPGAs, machine learning applications and artificial neural networks can be im-
plemented on FPGAs. Software and design tools are however needed to convert
the trained neural networks into efficient FPGA implementations. These may
perform direct conversion from neural network training result into VHDL, or
make use of High Level Synthesis (HLS) tools. The optimisation of the im-
plementation needs to take into account the boundary conditions given by the
measurement system, like maximal latency or the required data bandwidth, and
balance against the available FPGA resources. In case data reduction is the goal
of the processing algorithm, monitoring processes may collect summary infor-
mation from the data which complements the extracted core features and can
be stored as meta-data. FPGAs are thus powerful and flexible platforms for
high-bandwidth data processing, feature extraction and data reduction. add refer-

ences

add exist-
ing exam-
ples and a
few concrete
next steps

2.5 Machine learning

Arno

Machine learning is ubiquitous in today’s data-driven research. In particular,
artificial neural networks have been introduced to all stages of data processing
in astrophysics and high-energy physics experiments. In the context of this
document, data reduction, feature extraction and event categorisation in very
early data processing stages are of interest. While high-energy physics may have
simulation models that can be used for network training, astrophysical applica-
tions often must rely on detection of anomalies from the regular data patterns.
Supervised and unsupervised learning must therefore both be explored to ob-
tain best signal-to-background ratio. Convolutional and recurrent networks are
typically applied in order to perform feature extraction tasks, like identification
of certain physics event types or reconstruction of amplitude or time of detector
signals. Another example are auto-encoders which may be applied for anomaly
detection tasks. Plenty of applications already exist. add refer-

encesThe preparation of the input data to the machine learning tools is an impor-
tant step. Normalisation, scaling or decorrelation may be necessary to obtain
good training results. Software tools for defining the network architecture and
for performing the network training are, for example, Keras/Tensorflow, Py-
Torch, or . Eventually, the trained network needs to be deployed in a data to be ex-

tended
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processing hardware. Depending on the requirement of the data processing
task, FPGAs, GPUs, or CPUs are utilized. The main parameters to decide
which platform suits best to the application are the overall data bandwidth, the
required latency, . to be ex-

tendedThe challenge of deploying machine learning in the processing of large-
volume data streams is therefore both on the optimisation of the network archi-
tecture and on the hardware implementation. In particular for the latter, tools
shall be further developed and provided to the research community, in order to
allow higher-level optimisation of the data processing task. add refer-

ences

add exist-
ing exam-
ples and a
few concrete
next steps

2.6 Frameworks for developments

Hermann

3 Connection to other WPs and TAs

3.1 Relation to TA2

Dominik3.2 Relation to TA3
Susanne

4 Use cases and workflows

4.1 Identification of pulsars/fast radio bursts
Ramesh

Identifying signals from short-lived (i.e < 100µs) radio bursts in streaming,
high speed is a challenging problem, especially when dealing with multiple beam-
formed sky positions in parallel. For instance, the MeerKAT facility can gener-
ate > 500 beams at ≈ 50µs time resolutions. Similarly when the SKA becomes
operational, the facility will generate ∼ 2200 beams. When a burst is detected,
a trigger to capture the raw data stream (1.7 Tbits/s at MeerKAT) from the
individual telescopes is generated. The detection of bursts is done by the real-
time search on a sufficiently averaged, frequency-transformed beamformed-data
over several dispersion trials. The latter is crucial as a significant dispersion in
the signal ascertains its astrophysical origins.

Closely related, but more complex is the discovery of radio pulsars from the
beamformed data from both the MeerKAT and the SKA. This problem is a truly
multi-parametric search of the pulsar signal. As with radio bursts, the first step
is to generate several time series each with different dispersion trial. Within a
dispersed time series, the so-called acceleration and jerk trials are created (this
process approximates the Doppler shift of the radio signals as they are emitted
by a orbiting pulsar in a binary system, whose orbital parameters are not known
in advance). Following this stage, a Fourier search for periodicity is carried out.
Just as in radio burst searches, the pulsar search requires a suitably averaged and
frequency transformed data, but lasting significantly longer in time. 30–minute
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long data blocks are commonly used. However, before the next 30 minute-block
arrives, the search over all beams, dispersion, acceleration and jerk trials should
be complete. In contrast to the search for bursts, the pulsar searches do not
require the raw telescope data streams.

4.2 Detection of anomalies in detector response
Arno - needs
some re-
writing

Anomaly detection is a method used for identifying rare or unusual signals
in large data streams. Applications can be in physics measurements or in the
operation and maintenance of physics instruments. In the latter case, it is
also known as predictive maintenance, i.e. the detection of deviations from the
usual behaviour well before a measurement instrument is in a critical mode of
operation.

The result of the anomaly detection can be a tag of the physics event or
a warning message indicating problems with the measurement device. These
results will presumably become part of the regular data streams, like physics
data or monitoring data.

Additional metadata may however be interesting to store. If an anomaly
detection algorithm continuously updates its behaviour in order to learn from
the regular data flow it will be useful to track the internal parameter settings
of the algorithm. Another example are indicators which activated the anomaly
detection. Specific signatures of the data or of the instrument behaviour may
only be available in the real-time data stream and not in the data recorded
during normal operation.

Different logging frequencies and metadata data volumes can thus be ex-
pected for anomaly detection. These should be evaluated in specific applica-
tions, so that general aspects can be identified and implemented in metadata
concepts. add exist-

ing exam-
ples and a
few concrete
next steps

4.3 Identification of particle decays in software-based trig-
gering

Hans
Since 2022, the LHCb experiment uses a purely software-based high-level

trigger (HLT) to decide which particle collisions provided by the Large Hadron
Collider contain interesting processes. The HLT provides a full reconstruction of
all signal candidates of interest online for every collision, which is made feasible
with a large computing farm that uses CPUs and GPUs to process 40MHz of
incoming data online. Only events which contain interesting process are stored,
the rest is discarded. The ability of GPUs to run optimized algorithms massively
in parallel was crucial to make the HLT technically feasible.

The HLT goes beyond the traditional trigger design, which consist of a fast
hardware stage that uses low-level signals from the detector, and usually several
successive software stages that perform a more and more sophisticated event re-
construction in each stage. Each stage discards a fraction of the events to reduce
the processing rate for later stages. LHCb’s HLT provides superior trigger effi-
ciency compared to the traditional design, because there is only one stage, the
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full information about the physical process contained in the event is available
for the trigger to make the decision. In the traditional design, less information
is available at trigger time and online decisions were less efficient. With the
HLT, it is possible to make the optimal decision online for the first time.

Technically, a HLT adds high-level metadata to the raw recorded event,
which is interpreted by an algorithm pipeline. At the lowest stage, tracks are
build from hits in the tracking system and energy deposits in the calorimeters;
particle identification data is attached. At the second stage, decay candidates
are reconstructed from these tracks, according to rules which analysts have de-
fined in advance. There are multiple decays of interest which are checked in
parallel. For a typical two-body decay, the software forms all possible combina-
tions of two tracks, and computes the mass of the ancestor under the hypothesis
that the tracks are the products for decay of interest. If the mass of the candi-
date is close to the known mass of the parent particle, the trigger accepts the
event. Further cuts, also defined in advance by the analysts, may be applied at
this stage to the products of the decay to reduce combinatorial background.

4.4 Outside Triggers and sending Triggers
Jakob

5 Concept for dynamic life cycle of data

6 Conclusions

We have described concepts for identifying highly complex, multi-parametric
signals arising in the context of irreversible data processing workflows. Our main
focus is on data-intensive experiments within the PUNCH sciences, however
most of the aspects in the concept could be generalized towards other fields of
science also processing high data rates.
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