

Gravitational Waves

as a probe of the early Universe

Valerie Domcke CERN

Colloquium at DESY, Hamburg May 16 2023

based on work with Wilfried Buchmüller, Camilo Garcia-Cely, Sung Mook Lee, Nick Rodd, Kai Schmitz and members of the LISA Cosmology Working group, and UHF-GW initiative.

GW observations today

GWs as a probe of the early Universe

GW observations today

Outline

transient and stochastic signals

LIGO Livingston, USA

2015: first direct observation of GWs, collision of two black holes a billion years ago

transient and stochastic signals

2015: first direct observation of GWs, collision of two black holes a billion years ago

next challenge: stochastic gravitational wave background analagous to CMB

Penzias, Wilson `64

astrophyscial and cosmological contributions

possible hint by PTAs (pulsar timing arrays)

prelude: stochastic gravitational wave background

primary observable:

$$\Omega_{GW} = \frac{1}{\rho_c} \frac{\partial \rho_{GW}(f,\tau)}{\partial \ln f}$$

eg review by Caprini, Figueroa '18

astrophysical sources:

unresolved mergers of compact objects (BH, NS, ..)

cosmological sources:

SM: inflation, thermal fluctuations \rightarrow very small

BSM: inflation, (p)reheating, phase transitions, ...

 $f \sim \text{mHz} \ (0.01/\epsilon_*) \ (T_*/100 \text{ GeV})$

 $\epsilon_* \lesssim 1$

example : phase transition

Water boiling: first order phase transition

Standard Model: electroweak symmetry breaking through Higgs acquiring a vacuum expectation value

.. and beyond: extended symmetry groups (eg GUTs) spontaneously broken in cooling Universe

example : phase transition

Water boiling: first order phase transition

Standard Model: electroweak symmetry breaking through Higgs acquiring a vacuum expectation value

.. and beyond: extended symmetry groups (eg GUTs) spontaneously broken in cooling Universe

1st order PT sources GWs

topological defects formed during PT radiate GWs

example : metastable cosmic strings

 $\mu \sim v_{B-L}^2$ string tension $m \sim v_{GUT}$ monopole mass

GWs as a probe of the early Universe

example: metastable cosmic strings

Buchmüller, VD, Schmitz 21

GUT-scale U(1) phase transition can be tested with GWs

example: metastable cosmic strings

GUT-scale U(1) phase transition can be tested with GWs

Outline

decoding the SGWB

signal vs background discrimination is very challenging!

- signal cannot be shielded, noise models have uncertainties
- expected signal shape is model and parameter dependent
- cosmological and astrophysical contributions superimposed

decoding the SGWB

signal vs background discrimination is very challenging!

- signal cannot be shielded, noise models have uncertainties
- expected signal shape is model and parameter dependent
- cosmological and astrophysical contributions superimposed

possible avenues

- signal vs noise channels / cross-correlation
- spectral shape
- anisotropies and polarization
- ..

decoding the SGWB

signal vs background discrimination is very challenging!

- signal cannot be shielded, noise models have uncertainties
- expected signal shape is model and parameter dependent
- cosmological and astrophysical contributions superimposed

possible avenues

- signal vs noise channels / cross-correlation
- spectral shape
- anisotropies and polarization

decoding the SGWB : polarization

some CP-violating models predict a **chiral** stochastic gravitational wave (GW) spectrum

a planar detector cannot distinguish left- and right-handed GWs from an isotropic source

LIGO Livingston - US

LISA (launch 2030s)

decoding the SGWB : polarization

some CP-violating models predict a **chiral** stochastic gravitational wave (GW) spectrum

a planar detector cannot distinguish left- and right-handed GWs from an isotropic source

LIGO Livingston - US

LISA (launch 2030s)

VD, Garcia-Bellido, Peloso, Pieroni, Ricciardone, Sorbo, Tasinato `20 [LISA Cosmology WG]

ground-based detectors: network breaks

Seto, Taruya `07; Crowder et al `12

sensitive to maximally chiral scale-invariant spectrum if SNR > 10³

LISA (or single ET): Seto `06 kinematic cosmic dipole breaks isotropy

sensitive to maximally chiral scale-invariant spectrum if SNR > 10^3

decoding the SGWB : polarization

some CP-violating models predict a **chiral** stochastic gravitational wave (GW) spectrum

a planar detector cannot distinguish left- and right-handed GWs from an isotropic source

LIGO Livingston - US

LISA (launch 2030s)

VD, Garcia-Bellido, Peloso, Pieroni, Ricciardone, Sorbo, Tasinato `20 [LISA Cosmology WG]

ground-based detectors: network breaks

Seto, Taruya `07; Crowder et al `12

sensitive to maximally chiral scale-invariant spectrum if SNR > 10³

possible for SNR > 10^3

LISA (or single ET): Seto `06 kinematic cosmic dipole breaks isotropy

sensitive to maximally chiral scale-invariant spectrum if SNR > 10^3

GWs as a probe of the early Universe

Outline

CMB/BBN bound constrains energy

CMB/BBN bound constrains energy

experiments measure displacement

UHG GW initiative Living Review:

GW electrodynamics

Classical electrodynamics + linearized GR, $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$:

$$\partial_{\nu}F^{\mu\nu} = j^{\mu}_{\text{eff}} = (-\nabla \cdot \mathbf{P}, \, \nabla \times \mathbf{M} + \partial_t \mathbf{P})$$

with

$$P_{i} = -h_{ij}E_{j} + \frac{1}{2}hE_{i} + h_{00}E_{i} - \epsilon_{ijk}h_{0j}B_{k},$$

$$M_{i} = -h_{ij}B_{j} - \frac{1}{2}hB_{i} + h_{jj}B_{i} + \epsilon_{ijk}h_{0j}E_{k},$$

effective curent effective polarization vector effective magnetization vector

induced at linear order in h in presence of external E,B field

VD, Garcia-Cely, Rodd `22

Direct analogy with axion electrodynamics

$$\mathcal{L} \supset g_{a\gamma\gamma} a \mathbf{E} \cdot \mathbf{B} \rightarrow \mathbf{P} = g_{a\gamma\gamma} a \mathbf{B}, \quad \mathbf{M} = g_{a\gamma\gamma} a \mathbf{E}$$
 McAllister et al `18
Tobar, McAllister, Goryachev `19
Quellet, Bogorad `19

effective source terms in Maxwell's equation due to GW

GWs as a probe of the early Universe

16 / 32

eg ABRACADABRA, SHAFT, DM Radio:

VD, Garcia-Cely, Rodd `22 VD, Garcia-Cely, Lee, Rodd (in progress)

static magnetic field

eg ABRACADABRA, SHAFT, DM Radio:

VD, Garcia-Cely, Rodd `22 VD, Garcia-Cely, Lee, Rodd (in progress)

static magnetic field

effective current

eg ABRACADABRA, SHAFT, DM Radio:

VD, Garcia-Cely, Rodd `22 VD, Garcia-Cely, Lee, Rodd (in progress)

static magnetic field

effective current

induced oscillating magnetic field

eg ABRACADABRA, SHAFT, DM Radio:

VD, Garcia-Cely, Rodd `22 VD, Garcia-Cely, Lee, Rodd (in progress)

static magnetic field

effective current

induced oscillating magnetic field

measure magnetic flux (~ h) through pickup loop

at leading order in (ωR) :

$$\Phi_{\rm gw} = \frac{i \, e^{-i\omega t}}{16\sqrt{2}} \, h^{\times} \omega^3 B_0 \pi r^2 Ra(a+2R) s_{\theta_h}^2$$

eg ABRACADABRA, SHAFT, DM Radio:

- set bounds recasting existing axion searches
- parametric improvement w modified pick-up loop

VD, Garcia-Cely, Rodd `22 VD, Garcia-Cely, Lee, Rodd (in progress)

static magnetic field

effective current

induced oscillating magnetic field

measure magnetic flux (~ h) through pickup loop

at leading order in (ωR) :

$$\Phi_{\rm gw} = \frac{i \, e^{-i\omega t}}{16\sqrt{2}} \, h^{\times} \omega^3 B_0 \pi r^2 Ra(a+2R) s_{\theta_h}^2$$

match to axion induced flux to recast axion-photon coupling bounds as GW bounds

$$\Phi_a = e^{-i\omega t} g_{a\gamma\gamma} \sqrt{2} B_0 \pi r^2 R \ln(1 + a/R)$$

axion haloscopes: bounds and prospects

bounds from recasting ABRA [2102.06722] and SHAFT limits [2003.03348]

prospects for DM Radio proposals [Snowmass Letters of Interest CF2]

still far away from BBN bound, but clear synergies with axion searches

see also Ejilli et al `19, Berlin et al `21,`23

GWs as a probe of the early Universe

18 / 32

Conclusions and Outlook

The stochastic gravitational wave background

- astrophysical and cosmological contributions expected
- possibly first hint at pulsar timing arrays stay tuned!
- further characterization (spectrum, anisotropies, polarization..) will be crucial for BSM interpretations

The search for high-frequency gravitational waves

- GW signals >> kHz would be a smoking gun of BSM physics
- GW electrodynamics has clear similarities with axion electrodynamics: Important synergies between axion searches and UHF GW searches
- New bounds and prospects for low-mass axion haloscopes as GW detectors

Thank you!
backup slides

BBN bound

at BBN or CMB decoupling:

$$\rho_{GW}(T) < \Delta \rho_{rad}(T) \quad \Rightarrow \quad \left(\frac{\rho_{GW}}{\rho_{\gamma}}\right)_{T_{BBN,CMB}} \le \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} \Delta N_{eff} \simeq 0.05$$

at BBN, CMB decoupling ~ 5 % GW energy density allowed

 $\frac{\rho_{GW}^0}{\rho^0} = \Omega_{\gamma}^0 \left(\frac{g_s^0}{g_s(T)}\right)^{4/3} \frac{\rho_{GW}(T)}{\rho_{\gamma}(T)} \le 10^{-5} \Delta N_{eff} \simeq 10^{-6} \qquad \text{note: constraint} \\ \text{on total GW energy}$

today, energy fraction $< 10^{-6}$ (for GWs present at BBN / CMB decoupling)

metastable cosmic strings

consider
$$SO(10) \rightarrow G_{SM} \times U(1)_{B-L} \rightarrow G_{SM}$$

Vilenkin `82; Leblond, Shlaer, Siemens `09; Monin, Voloshin `08/09; Dror et al `19

- $\Pi_1(G_{\rm SM} \times U(1)/G_{\rm SM}) = \Pi_1(U(1)) \neq \mathbb{1} \quad \longrightarrow \quad \cos \mathbb{I}$ $\Pi_1(SO(10)/G_{SM}) = \mathbb{1} \quad \longrightarrow \quad \log \mathbb{I}$
 - cosmic strings
 - no cosmic strings

metastable cosmic strings

consider
$$SO(10) \rightarrow G_{SM} \times U(1)_{B-L} \rightarrow G_{SM}$$

Vilenkin `82; Leblond, Shlaer, Siemens `09; Monin, Voloshin `08/09; Dror et al `19

 $\Pi_1(G_{\rm SM} \times U(1)/G_{\rm SM}) = \Pi_1(U(1)) \neq \mathbb{1} \quad \longrightarrow \quad \text{cosmic strings}$ $\Pi_1(SO(10)/G_{SM}) = \mathbb{1} \quad \longrightarrow \quad \text{no cosmic strings}$

resolution: no topologically stable cosmic strings

 $SO(10) \rightarrow G_{SM} \times U(1)_{B-L}$ generates monopoles

 $G_{SM} \times U(1)_{B-L} \to G_{SM}$

generates cosmic strings,

metastable string & monopole network

metastable cosmic strings

consider
$$SO(10) \rightarrow G_{SM} \times U(1)_{B-L} \rightarrow G_{SM}$$

Vilenkin `82; Leblond, Shlaer, Siemens `09; Monin, Voloshin `08/09; Dror et al `19

 $\Pi_1(G_{\rm SM} \times U(1)/G_{\rm SM}) = \Pi_1(U(1)) \neq \mathbb{1} \quad \longrightarrow \quad \text{cosmic strings}$ $\Pi_1(SO(10)/G_{SM}) = \mathbb{1} \quad \longrightarrow \quad \text{no cosmic strings}$

resolution: no topologically stable cosmic strings

 $SO(10) \to G_{SM} \times U(1)_{B-L}$

cosmic inflation

 $G_{SM} \times U(1)_{B-L} \to G_{SM}$

generates monopoles

dilutes monopoles

metastable string & monopole network

generates cosmic strings,

decay via nucleation of monopoles

 $\Gamma_d \sim \mu \exp(-\pi \kappa^2), \quad \kappa^2 = m^2/\mu$

 $\mu \sim v_{B-L}^2$ string tension $m \sim v_{GUT}$ monopole mass

gravitational wave signal - SGWB

see eg. Auclair, Blanco-Pillado, Figueroa et al `19

gravitational wave emission from integration over loop distribution function:

$$\Omega_{\rm GW}(f) = \frac{8\pi f(G\mu)^2}{3H_0^2} \sum_{q=1}^{\infty} C_q(f) P_q$$
$$C_q(f) = \frac{2q}{f^2} \int_0^{z_{\rm max}} dz \frac{n(\ell(z), t(z))}{H(z)(1+z)^6}$$

GW power spectrum of a single loop $P_q = \Gamma/(\zeta(4/3)q^{4/3})$ # of loops emitting GWs observed at frequency *f* today # of loops with length ℓ at time *t* with $\ell = 2q/((1+z)f)$ cosmological history

gravitational wave signal - SGWB

see eg. Auclair, Blanco-Pillado, Figueroa et al `19

gravitational wave emission from integration over loop distribution function:

$$\Omega_{\rm GW}(f) = \frac{8\pi f(G\mu)^2}{3H_0^2} \sum_{q=1}^{\infty} C_q(f) P_q$$
$$C_q(f) = \frac{2q}{f^2} \int_0^{z_{\rm max}} dz \frac{n(\ell(z), t(z))}{H(z)(1+z)^6}$$

GW power spectrum of a single loop $P_q = \Gamma/(\zeta(4/3)q^{4/3})$ # of loops emitting GWs observed at frequency *f* today # of loops with length ℓ at time *t* with $\ell = 2q/((1+z)f)$ cosmological history

$$\begin{split} n(\ell,z) &= n(\ell,z)_{\kappa \to \infty} \times e^{-\Gamma_d [\ell(t-t_s)+1/2\Gamma G \mu(t-t_s)^2]} \times \Theta(\alpha t_s - \ell(t_s)) & \text{finite CS life time} \\ & \text{number density} \\ \text{for stable strings} \\ n_r(\ell,t) &= 0.18 \ t^{-3/2} (\ell + 50G \mu t)^{-5/2} & \text{decay due to monopole} \\ \text{Blanco-Pillado, Olum, Shlaer '14} & \text{suchmüller, VD, Schmitz `21} \end{split}$$

gravitational wave signal - SGWB

see eg. Auclair, Blanco-Pillado, Figueroa et al `19

gravitational wave emission from integration over loop distribution function:

$$\Omega_{\rm GW}(f) = \frac{8\pi f(G\mu)^2}{3H_0^2} \sum_{q=1}^{\infty} C_q(f) P_q$$
$$C_q(f) = \frac{2q}{f^2} \int_0^{z_{\rm max}} dz \frac{n(\ell(z), t(z))}{H(z)(1+z)^6}$$

GW power spectrum of a single loop $P_q = \Gamma/(\zeta(4/3)q^{4/3})$ # of loops emitting GWs observed at frequency *f* today # of loops with length ℓ at time *t* with $\ell = 2q/((1+z)f)$ cosmological history analogous for contribution from segments

$$n(\ell, z) = n(\ell, z)_{\kappa \to \infty} \times e^{-\Gamma_d [\ell(t-t_s)+1/2\Gamma G \mu(t-t_s)^2]} \times \Theta(\alpha t_s - \ell(t_s)) \qquad \text{finite CS life time}$$

$$number \text{ density}_{\text{for stable strings}} \qquad \text{decay due to monopole}_{\text{production and GW}} \qquad \text{loop production only}_{\text{in scaling regime}}$$

$$n_r(\ell, t) = 0.18 t^{-3/2} (\ell + 50G\mu t)^{-5/2} \qquad \text{decay due to monopole}_{\text{emission}} \qquad \text{loop production only}_{\text{in scaling regime}}$$

$$Blanco-Pillado, Olum, Shlaer '14 \qquad Buchmüller, VD, Schmitz `21$$

example: metastable cosmic strings

GWs as a probe of the early Universe

NANOGrav: A first glimpse of the SGWB?

Pulsar timing array NANOGrav, Sept 2020:

"Our analysis finds strong evidence of a stochastic process, modeled as a power-law, with common amplitude and spectral slope across pulsars."

NANOGrav collaboration `20

"However, we find no statistically significant evidence that this process has quadrupolar spatial correlations, which we would consider necessary to claim a GWB detection consistent with General Relativity."

PPTA, EPTA and IPTA results

IPTA `22, 2201.03980

PPTA `21, 2107.12112

amplitude and spectral tilt compatitive with NANOGrav

no significant detection of quandropolar spatial correlation

Maybe. Stay tuned for more data!

GWs as a probe of the early Universe

decoding the SGWB: spectrum

Challenge: simultaneous reconstruction of noise, 'foreground' and 'signal'

decoding the SGWB : anisotropies

limited angular resolution due to broad antenna pattern of GW interferometers

Bartolo et al 2022 (LISA Cosmology WG)

LISA sensitivity to different multipoles

LIGO stochastic backgrounds

LIGO VIRGO O3 run, 2021

- possibly within reach of advanced LIGO / VIRGO / KAGRA
- not an intrinsically stochastic background: ET / Cosmic Explorer can resolve all BBHs in the Universe

LISA and backgrounds

LISA stochastic backgrounds

Périgois, Belczynski, Bulik, Regimbeau `21

- merger rate will be well measured by LIGO/VIRGO/KAGRA
- thousands of resolved BHBs, millions of unresolved BHBs [Sesana `16]
- overlapping signals \rightarrow confusion noise. Isotropic? Gaussian? ...

[a note on frames]

GR is invariant under coordinate transformations, but linearized GR is not

Transverse traceless (TT) gauge

- coordinates fixed by freely falling test masses
- GW takes very simple form $h_{0\mu} = 0, h_i^i = 0, \partial_j h^{ij} = 0$
- rigid body seems to 'oscillate' in presence of GW

Proper detector frame

- coordinates fixed by laboratory frame
- GW takes a more involved form
- description of experimental setup and observables is straightforward

$$\begin{split} h_{00} &= \omega^2 F(\mathbf{k} \cdot \mathbf{r}) \, \mathbf{b} \cdot \mathbf{r}, \qquad b_j \equiv r_i h_{ij}^{\mathrm{TT}} \big|_{\mathbf{r}=0}, \\ h_{0i} &= \frac{1}{2} \omega^2 \left[F(\mathbf{k} \cdot \mathbf{r}) - i F'(\mathbf{k} \cdot \mathbf{r}) \right] \left(\hat{\mathbf{k}} \cdot \mathbf{r} \, b_i - \mathbf{b} \cdot \mathbf{r} \, \hat{k}_i \right), \\ h_{ij} &= -i \omega^2 F'(\mathbf{k} \cdot \mathbf{r}) \left(|\mathbf{r}|^2 \, h_{ij}^{\mathrm{TT}} \big|_{\mathbf{r}=0} + \mathbf{b} \cdot \mathbf{r} \, \delta_{ij} - b_i r_j - b_j r_i \right), \end{split}$$

VD, Garcia-Cely, Rodd `22 s.a. Berlin et al `21

we will consider a plane wave plane wave in the proper detector frame

$$h_{ij}^{TT} = (h^+ e_{ij}^+(\phi_h, \theta_h) + h^\times e_{ij}^\times(\phi_h, \theta_h))e^{i(\mathbf{k}\cdot\mathbf{r} - \omega\mathbf{t})}$$

32 / 32