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GW observations today

pulsar timing arrays interferometers
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GWs as a probe of the early Universe 5/32 Valerie Domcke - CERN



transient and stochastic signals

I I T
Inspiral

T
Merger Ring-
[+}

X

1.0 -

Strain (1072%)
~ O o o

.0 H

— Numerical relativity

I Reconstructed (template)
1 |

GWs as a probe of the early Universe

6 /32

~ LIGO Livingston, USA

2015: first direct observation of GWSs,

collision of two black holes a hillion
years ago
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transient and stochastic signals

, , l l LIGO Livingston, USA
Inspiral Merger E.Lr:,gr-‘ o LR il
{ sisce
1 <+
'g-o . 2015: first direct observation of GWSs,
1.0 e - collision of two black holes a billion
-Reconstrlucted (templat?) years ago
4 )
analagous to CMB astrophyscial
and
cosmological
contributions
possible hint
by PTAs
(pulsar timing
next challenge: s y arrays)
stochastic gravitational Penzias, Wilson ‘64
\ wave background Y
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prelude: stochastic gravitational wave background

. N eg review by Caprini, Figueroa ‘18
stochastic gravitational wave background (SGWB):

astrophysical sources:

unresolved mergers
of compact objects (BH, NS, ..)

cosmological sources:

SM: inflation, thermal fluctuations
- very small

BSM: inflation, (p)reheating,
phase transitions, ...

primary observable: f ~mHz (0.01/e,) (T%/100 GeV)
9 _ i apGW(fa T) €, 5 1
e olnf

GWs as a probe of the early Universe 7132 Valerie Domcke - CERN



example : phase transition

. : . Energy )
Water boiling: first order phase transition

Standard Model: electroweak symmetry breaking through

Higgs acquiring a vacuum expectation value e
tunnelin.m ' N
.. and beyond: extended symmetry groups (eg GUTS) : :
: . . field value
spontaneously broken in cooling Universe
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example : phase transition

Water boiling: first order phase transition

Standard Model: electroweak symmetry breaking through
Higgs acquiring a vacuum expectation value

.. and beyond: extended symmetry groups (eg GUTS)
spontaneously broken in cooling Universe

Energy A

tunneling

field value

1st order PT sources GWs

GWs as a probe of the early Universe 8/32

topological defects formed during PT radiate GWs
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example : metastable cosmic strings

Oks?

® Q\/@“

scaling regime
(long strings & loops)

T

cosmic strings formed
in phase transition, eg

GSM X U(l)B_L — GSM

GWs as a probe of the early Universe

ty=1/T? segments & loops

T [see also Leblond, Shlaer, Simons "09]

spontaneous creation of monopoles
due to GUT embedding
Ggpr X U(l)B_L C 50(10)

Lq~ pexp(=7k?), &°=m?/u

(o~ v% ; string tension
m ~ vgur Mmonopole mass

9/32 Valerie Domcke - CERN



example: metastable cosmic strings

Buchmiiller, VD, Schmitz "21
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GUT-scale U(1) phase transition can be tested with GWs
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example: metastable cosmic strings

Buchmiiller, VD, Schmitz "21

first tentative hint of SGWB at pulsar timing arrays
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GWs as a probe of the early Universe

10/ 32 Valerie Domcke - CERN



Outline

PTAs interferometers new ideas needed
GW
amplitude the stochastic GW background
ion
K inflation
B ——— E metastable
cosmic
2‘ d 3 0 strings
_ measuring the
probing the polarization of the challenge of
GUT scale the SGWB with high frequency GWs
with PTAs interferometers -
early universe
phase
transition
>
nHz Hz GHz frequency
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decoding the SGWB

signal vs background discrimination is very challenging!

* signal cannot be shielded, noise models have uncertainties
* expected signal shape is model and parameter dependent

* cosmological and astrophysical contributions superimposed

GWs as a probe of the early Universe 12 /32 Valerie Domcke - CERN



decoding the SGWB

signal vs background discrimination is very challenging!

* signal cannot be shielded, noise models have uncertainties
* expected signal shape is model and parameter dependent

* cosmological and astrophysical contributions superimposed

possible avenues

signal vs noise channels / cross-correlation

Spatial correlation, I'(¢)

spectral shape

anisotropies and polarization

GWs as a probe of the early Universe 12 /32

PPTA 21, 2107.12112

Tooiet

120 150 180
Angle between Earth — pulsar baselines, ¢ [deg]
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decoding the SGWB

signal vs background discrimination is very challenging!

* signal cannot be shielded, noise models have uncertainties
* expected signal shape is model and parameter dependent

* cosmological and astrophysical contributions superimposed

possible avenues

signal vs noise channels / cross-correlation

Spatial correlation, I'(¢)

spectral shape

anisotropies and polarization

GWs as a probe of the early Universe 12 /32

PPTA 21, 2107.12112

Tooiet
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decoding the SGWB : polarization

some CP-violating models predict a chiral stochastic gravitational wave (GW) spectrum

i a planar detector cannot distinguish left- and right-handed GWs from an isotropic source

LIGO Livingston - US LISA (launch 2030s)

GWs as a probe of the early Universe 13/32 Valerie Domcke - CERN



decoding the SGWB : polarization

some CP-violating models predict a chiral stochastic gravitational wave (GW) spectrum

i a planar detector cannot distinguish left- and right-handed GWs from an isotropic source

LIGO Livingston - US LISA (launch 2030s)

VD, Garcia-Bellido, Peloso, Pieroni, Ricciardone, Sorbo, Tasinato 20 [LISA Cosmology WG]

LISA (or single ET): Seto "06
ground-based detectors: kinematic cosmic dipole breaks isotropy
network breaks
Seto, Taruya 07; Crowder et al "12 =

sensitive to
maximally chiral
scale-invariant
spectrum if
SNR > 10°

-~ sensitive to maximally
chiral scale-invariant
spectrum if SNR > 103
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decoding the SGWB : polarization

some CP-violating models predict a chiral stochastic gravitational wave (GW) spectrum

i a planar detector cannot distinguish left- and right-handed GWs from an isotropic source

LIGO Livingston - US LISA (launch 2030s)

VD, Garcia-Bellido, Peloso, Pieroni, Ricciardone, Sorbo, Tasinato 20 [LISA Cosmology WG]

LISA (or single ET): Seto "06
ground-based detectors: kinematic cosmic dipole breaks isotropy
network breaks
Seto, Taruya 07; Crowder et al "12 =

sensitive to
maximally chiral
scale-invariant
spectrum if
SNR > 10°

-~ sensitive to maximally
chiral scale-invariant
spectrum if SNR > 103

possible for SNR > 10°

GWs as a probe of the early Universe 13/32 Valerie Domcke - CERN
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PTAS interferometers new ideas needed
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challenges in UHF GW detection

BBN bound

rly\Universe
B hysics

Theorists are jouful people
|

frequency

CMB/BBN bound constrains energy

GWs as a probe of the early Universe 15/32
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challenges in UHF GW detection

BBN bound

rly\Universe
B hysics

Theorists are jouful people
|

frequency
QGW X f2 hg

CMB/BBN bound constrains energy

GWs as a probe of the early Universe 15/32

Experimentalists live -

on a slippery slope

>
frequency

experiments measure displacement

Valerie Domcke - CERN/EPFL



challenges in UHF GW detection

UHG GW initiative Living Review:
https://arxiv.org/abs/2011.12414
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challenges in UHF GW detection

UHG GW initiative Living Review:
https://arxiv.org/abs/2011.12414
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challenges in UHF GW detection

UHG GW initiative Living Review:
https://arxiv.org/abs/2011.12414
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https://arxiv.org/abs/2011.12414

GW electrodynamics

Classical electrodynamics + linearized GR, 9uv = Muv + hpuw

O, FM = jte = (=V P, V x M + 9;P) eﬂ‘ect!ve curent |
effective polarization vector
effective magnetization vector

with

. induced at linear order in h
P, = —hiiEj+ ShE; + hoo B — €;51ho; B, in presence of external E,B field
M; = —hijBj — shB; + h;;B; + €;j1hoj Ex, VD, Garcia-Cely, Rodd “22

Direct analogy with axion electrodynamics

LD gayyaE-B  — P=gs,aB, M=g;aE McAllister et al 18
Tobar, McAllister, Goryachev 19
Quellet, Bogorad "19

effective source terms in Maxwell's equation due to GW

GWs as a probe of the early Universe 16/ 32 Valerie Domcke - CERN



GW signal in axion haloscopes

eg ABRACADABRA, SHAFT, DM Radio: VD, Gafcﬁa'cel)’, Rodd 22 |
VD, Garcia-Cely, Lee, Rodd (in progress)

static magnetic field

[

GWs as a probe of the early Universe 17 /32 Valerie Domcke - CERN



GW signal in axion haloscopes

eg ABRACADABRA, SHAFT, DM Radio: VD, Garc?a-Cer, Rodd 22 |
VD, Garcia-Cely, Lee, Rodd (in progress)

static magnetic field

effective current

[
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GW signal in axion haloscopes

eg ABRACADABRA, SHAFT, DM Radio: VD, Garcia-Cely, Rodd 22
VD, Garcia-Cely, Lee, Rodd (in progress)

static magnetic field

effective current

induced oscillating magnetic field
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GW signal in axion haloscopes

eg ABRACADABRA, SHAFT, DM Radio: VD, Garcia-Cely, Rodd 22
VD, Garcia-Cely, Lee, Rodd (in progress)

static magnetic field

effective current

induced oscillating magnetic field

measure magnetic flux (~ h)
through pickup loop

at leading order in (wR) :
H,., = pe ™ h*w®Byrr*Ra(a + 2R)s;
gw 16\/§ 0n

GWs as a probe of the early Universe 17 /32 Valerie Domcke - CERN



GW signal in axion haloscopes

eg ABRACADABRA, SHAFT, DM Radio: VD, Garc?a-Cer, Rodd 22 |
VD, Garcia-Cely, Lee, Rodd (in progress)

static magnetic field

effective current

induced oscillating magnetic field

measure magnetic flux (~ h)
through pickup loop

at leading order in (wR) :
b, = pe ™ h*w®Byrr*Ra(a + 2R)s;
gw 16\/§ On
match to axion induced flux to recast
axion-photon coupling bounds as GW bounds

* set bounds recasting
existing axion searches :
< D, =e ' goV2Borr?RIn(1 + a/R)
* parametric improvement

w modified pick-up loop 17/ 32 Valerie Domcke - CERN



axion haloscopes: bounds and prospects

VD, Garcia-Cely, Rodd 22
circular pickup loop . fig-8 pickup loop

(%]
T

— = = =

99 9 9
[ I
‘

h [strain]
=
L
h [strain]
ADMX
ARCADE

H

3
L,
(o]

10—14 L

10—16 L

107"

_DMRadio GW Sensitivity | . 10~ UHF-GW Landscape S
1072 107! 10° 10! 102 102 10U 10 1ot 102 1° 1o

10—20

bounds from recasting ABRA [2102.06722] and SHAFT limits [2003.03348]

prospects for DM Radio proposals [Snowmass Letters of Interest CF2]

still far away from BBN bound, but clear synergies with axion searches

see also Ejilli et al '19, Berlin et al 21, 23
GWs as a probe of the early Universe 18 /32 Valerie Domcke - CERN



Conclusions and Outlook

The stochastic gravitational wave background
 astrophysical and cosmological contributions expected
* possibly first hint at pulsar timing arrays — stay tuned!

 further characterization (spectrum, anisotropies, polarization..)
will be crucial for BSM interpretations

The search for high-frequency gravitational waves

* GW signals >> kHz would be a smoking gun of BSM physics

* GW electrodynamics has clear similarities with axion electrodynamics:
Important synergies between axion searches and UHF GW searches

* New bounds and prospects for low-mass axion haloscopes as GW detectors

Thank youl!

GWs as a probe of the early Universe 19/ 32 Valerie Domcke - CERN
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BBN bound

photons neutrinos

radiation energy after electron decoupling: / / /
Prad = 35 ( ( ) (3.046 + ANcs5) )

at BBN or CMB decoupling:

7 4 4/3

PGW (T) < Aprad(T) = (pGW) 3
P~ TBBN,CMB

- at BBN, CMB decoupling ~ 5 % GW energy density allowed

0 0 \4/3 :
. Paw _ 0 [ 9s pew (T) _5 L 1n—6 note: constraint
today: 0 Q) (m) (T) <1077ANepr ~ 10 on total GW energy

- today, energy fraction < 10° (for GWs present at BBN / CMB decoupling)

GWs as a probe of the early Universe 21/32 Valerie Domcke - CERN



metastable cosmic strings

. Vilenkin "82; Leblond, Shlaer, Siemens "09;
consider 50(10) — Gsp X U(l)B—L — Gsum Monin, Voloshin *08/09: Dror et al *19

I (Gsm x U(1)/Gsm) =11, (U(1)) #1  —9  cosmic strings
1, (SO(10)/Gsar) = 1 —p N0 cosmic strings

GWs as a probe of the early Universe 22132 Valerie Domcke - CERN



metastable cosmic strings

. Vilenkin "82; Leblond, Shlaer, Siemens "09;
consider 50(10) — Gsp X U(l)B—L — Gsp Monin, Voloshin 08/09; Dror et al 19

I (Gsm x U(1)/Gsm) =11, (U(1)) #1  —9  cosmic strings
1, (SO(10)/Gsar) = 1 —p N0 cosmic strings

resolution: no topologically stable cosmic strings

SO(10) = Gsm x U(1)p-1 generates monopoles
metastable
string &
monopole
network
Gsy xU()p_p = Gsum generates cosmic strings,

GWs as a probe of the early Universe 22132 Valerie Domcke - CERN



metastable cosmic strings

Vilenkin "82; Leblond, Shlaer, Siemens "09;

consider 50(10) — Gsp X U(I)B—L — Gsum Monin, Voloshin *08/09: Dror et al *19

I (Gsm x U(1)/Gsm) =11, (U(1)) #1  —9  cosmic strings

1, (SO(10)/Ggnr) = 1

— No cosmic strings

resolution: no topologically stable cosmic strings

50(10) — GSM X U(l)B_L

cosmic inflation

GSM X U(l)B_L — GSM

Ly~ pexp(—7x®), & =m?/p

GWs as a probe of the early Universe

generates monopoles

metastable

_ string &
dilutes monopoles monopole

network
generates cosmic strings,

decay via nucleation of monopoles

@~ v%_;  string tension
m ~ vgur monopole mass

22132 Valerie Domcke - CERN



gravitational wave signal - SGWB

see eg. Auclair, Blanco-Pillado, Figueroa et al "19

gravitational wave emission from integration over loop distribution function:

GW power spectrum of a single loop

87 f(Gu)? P, =T/(C(4/3)¢"")
Qaw(f) = 3H2 - # of loops emitting GWs '

observed at frequency f today
2q Zmax
0

# of loops with length ¢ at time t

with £ =2q/((1+2)f)

cosmological history

GWs as a probe of the early Universe 231/32 Valerie Domcke - CERN



gravitational wave signal - SGWB

see eg. Auclair, Blanco-Pillado, Figueroa et al "19

gravitational wave emission from integration over loop distribution function:

GW power spectrum of a single loop

87 f(Gu)? P, =T/(C(4/3)¢"")
Qaw(f) = 3H2 - # of loops emitting GWs '

observed at frequency f today

2q /Zm"‘x 27 0(2),t(2)) # of loops with length ¢ at time ¢
2
0

with £ =2q/((1+2)f)

(2)(1 + 2)°

cosmological history

n(l,2) = n(l, 2) pus X e—I‘d[E(t—ts)+1/2FG,u(t—ts)2] % O(at, — l(t, .. L
finite CS life time
number density decay due to monopole loop production only
for stable strings  production and GW in scaling regime

ne(€,t) = 0.18 t=3/2(¢ + 50Gut)~>/2  emission

Blanco-Pillado, Olum, Shlaer ‘14 Buchmiiller, VD, Schmitz "21
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gravitational wave signal - SGWB

see eg. Auclair, Blanco-Pillado, Figueroa et al "19

gravitational wave emission from integration over loop distribution function:

GW power spectrum of a single loop

87 f(Gu)? P, =T/(C(4/3)¢"")
Qaw(f) = 3H2 - # of loops emitting GWs '

observed at frequency f today

2q /Zm"‘x 27 0(2),t(2)) # of loops with length ¢ at time ¢
2
0

with £ =2q/((1+2)f)

(2)(1 + 2)°

cosmological history

analogous for contribution from segments

2
n(l,2) =0l 2) o0 x e _LHTHIHRTORIE O (at, — ((L)  finite CS life time
number density decay due to monopole loop production only
for stable strings production and GW in scaling regime
n.(€,t) = 0.18 t=3/2(¢ + 50Gut) =%/ emission
Blanco-Pillado, Olum, Shlaer ‘14 Buchmiiller, VD, Schmitz "21
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example: metastable cosmic strings

topologically stable cosmic strings
(highly constrained by PTA)

1078

-10 [«
3 10

C
o
<

1072 ¢

metastable cosmic strings:

-
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LISA

........

-
‘l
-
-
-~

-
-
-----

Gu=10" 1

— /et 107
f o k=7 1077 |

J S oSS Nk= 10-10
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10-14 l '!!| [ 4 A i /, LA I
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24 ] 32

Buchmiiller, VD, Schmitz "21

discovery space for LISA, LIGO & beyond

SO(10)

VE ~ Uso10)/Vu )
Gu ~ (vy(r)/Mp)?

fmax ~ 10> MHz (T, /10" GeV)

GWs as a probe of the early Universe

Valerie Domcke - CERN



NANOGrav: A first glimpse of the SGWB?

Pulsar timing array NANOGrav, Sept 2020:

“Our analysis finds strong evidence of a
stochastic process, modeled as a power-law,
with common amplitude and spectral slope
across pulsars.”

lOFF A T T T L -
s ; ]
'g 05~ -
N T N - : | - _—
o 00F | SJ Y- - ~However, we find no statistically significant
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PPTA, EPTA and IPTA results

IPTA "22, 2201.03980
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no significant detection of
guandropolar spatial correlation

Maybe. Stay tuned for mg_
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decoding the SGWB: spectrum

Binned reconstruction (8 bins)
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Challenge: simultaneous reconstruction of noise, ‘foreground’ and ‘signal’
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decoding the SGWB : anisotropies
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GWs as a probe of the early Universe 28/ 32

Z-axis

X-axis

N L e T
Il
=W oo~ U R WN O

Bartolo et al 2022
(LISA Cosmology WG)

Valerie Domcke - CERN



LIGO stochastic backgrounds

LIGO VIRGO O3 run, 2021
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 possibly within reach of advanced LIGO / VIRGO / KAGRA

* not an intrinsically stochastic background: ET / Cosmic Explorer can resolve
all BBHs in the Universe
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LISA and backgrounds
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LISA stochastic backgrounds

Périgois, Belczynski, Bulik, Regimbeau 21
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* merger rate will be well measured by LIGO/VIRGO/KAGRA
* thousands of resolved BHBs, millions of unresolved BHBs [Sesana "16]

* overlapping signals - confusion noise. Isotropic? Gaussian? ...
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[ @ note on frames ]

GR is invariant under coordinate transformations, but linearized GR is not

Transverse traceless (TT) gauge [ BIT = (Wt el (6n,0n) + B € (0n, On))e 0T }

* coordinates fixed by freely falling test masses
« GW takes very simple form  ho, = 0,h! =0,0;h"” =0
* rigid body seems to ‘oscillate’ in presence of GW

Proper detector frame

« coordinates fixed by laboratory frame hoo =w*F(k-r)b-r, by =rihij| .
. 1 , A )
* GW takes a more involved form hog =5w” [F(k 1) —iF" (k- 1)] (k ‘rb—b-r k)
. . . .2 2
« description of experimental setup hij = —iw F'(k-x) (|r|* hif"| g + D18 —bir;=bjrs),

and observables is straightforward

VD, Garcia-Cely, Rodd 22
s.a. Berlin et al 21

we will consider a plane wave plane wave in the proper detector frame
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