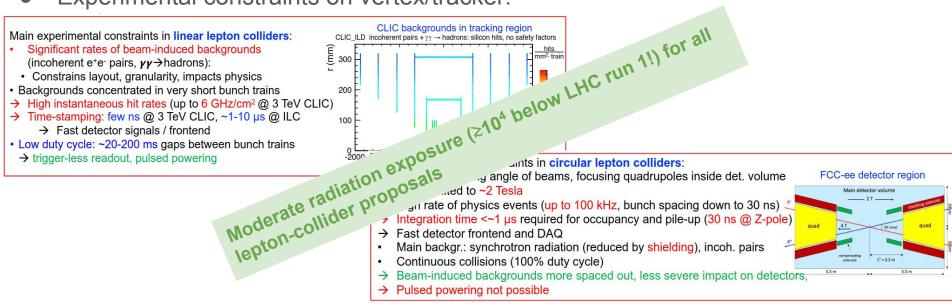


General Facts

- Number of participants: 78 registrations (17 remote participants)
- Three different hands-on tutorials (Allpix Squared, Corryvreckan, Test-Beam)
- Guided DESY and lab tours
- Career counseling and Career path session
- Four lectures
- And a plethora of talks from the community ...

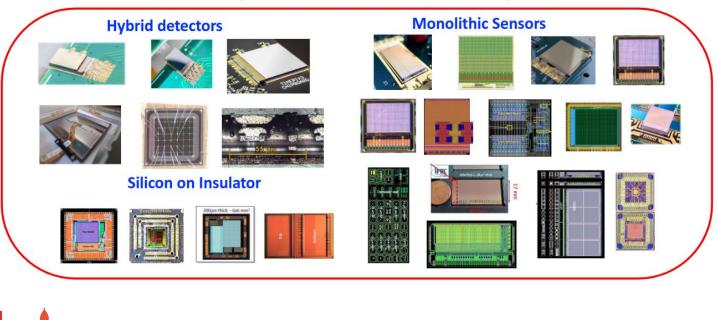
Lectures

- Silicon sensor technologies for vertex and tracking detectors at future e⁺e⁻ colliders - *Dominik Dannheim*
- From Sensor to Detector with some Obstacles Ingrid-Maria
 Gregor
- Experiments and detectors in photon science *David Pennicard*
- Tracking in particle detectors *Nicholas Styles*


Silicon sensor technologies for vertex and tracking detectors at future e+e- colliders - Dominik Dannheim (Monday)

Vertex/tracking detector concepts

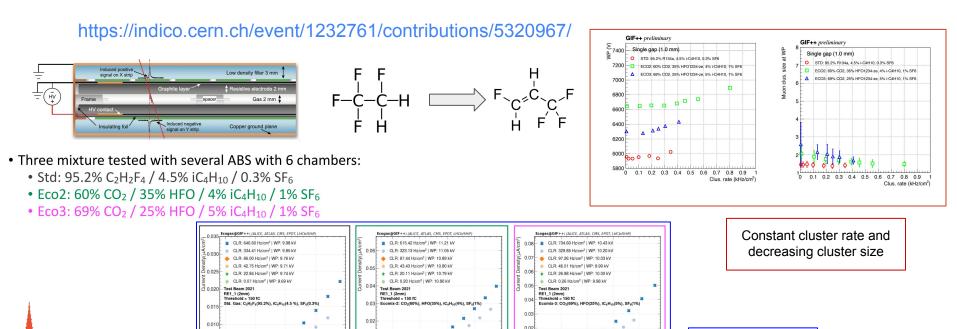
Collider	ILC		CLIC	FCC-ee			CEPC	
Detector Concept	SiD	ILD	CLICdet	CLD	FCC-ee IDEA	Noble LAr/LKr	CEPC baseline	CEPC IDEA
B-field [T]	5	4	4	2	2	2	3	2
Vertex inner radius [mm]	14	14	31	17 → 12	17 → 12	17 → 12	16	16
Tracker out. radius [m]	1.25	1.8	1.5	2.2	2.0	2.0	1.81	2.05
Vertex	Si-pixel	Si-pixel	Si-pixel	Si-pixel	Si-pixel	Si-pixel	Si-pixel	Si-pixel
Tracker	Si-strips	TPC/ Si-strips	Si-pixel	Si-pixel	DC/ Si-strips	DC/Si-strips or Si-pixel	TPC/Si-strips or Si-strips	DC/ Si-strips
	<u>arXiv:1306</u>	<u>.6329</u>	arXiv:1812.07337 arXiv:1911.12230 doi.org/10.1140/epist/e2019-900045-4				<u>arXiv:1811.10545</u>	


Silicon sensor technologies for vertex and tracking detectors at future e+e- colliders - Dominik Dannheim (Monday)

- Detector physics requirements in Higgs Factory: similar in all collider concepts
 - High-energy Linear-Collider: more focus on asymptotic position resolution
 - High-luminosity low-energy Circular-Collider: more focus on material budget and particle ID
- Experimental constraints on vertex/tracker:

Silicon sensor technologies for vertex and tracking detectors at future e+e- colliders - Dominik Dannheim (Monday)

Silicon pixel-detector R&D examples

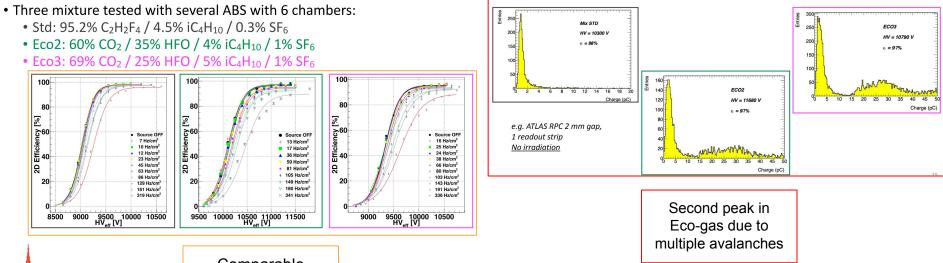


Tests of Resistive Plate Chambers with ecological gas mixture at GIF++ facility – Giuliana Galati (Tuesday)

0.005

HV_{er}(kV

e.a. CMS RPC 2 mm double aap. 128 readout strip

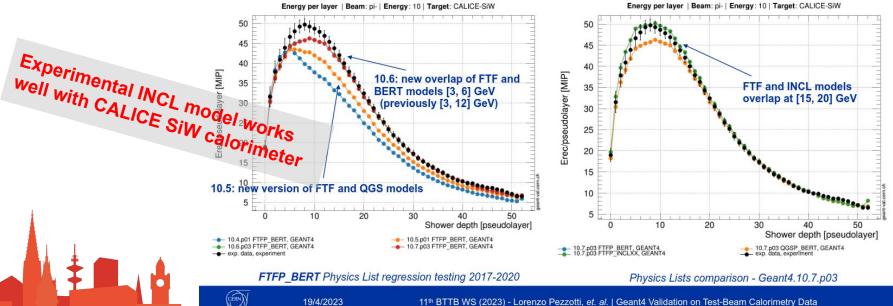

HV_{ett}(kV)

Higher currents for eco-gases

HV_{ett}(kV)

Tests of Resistive Plate Chambers with ecological gas mixture at GIF++ facility – Giuliana Galati (Tuesday)

https://indico.cern.ch/event/1232761/contributions/5320967/


Comparable efficiency and WP Geant4 validation on test-beam calorimetry data (Wednesday)

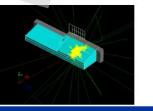
https://indico.cern.ch/event/1232761/contributions/5320333/

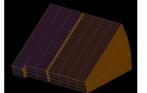
CALICE SiW: longitudinal energy distributions

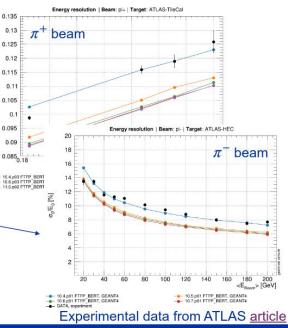
10 GeV π^- , exp. data from NIM A794

Geant4 validation on test-beam calorimetry data (Wednesday)

https://indico.cern.ch/event/1232761/contributions/5320333/


Hadronic resolution - FTFP_BERT (2017-2021)



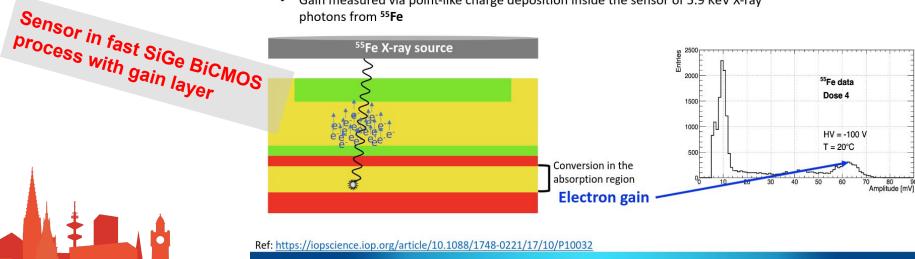


- π^+ response fluctuations in good agreement with data for G4 10.4.
- Pion response fluctuations TEC FTFP_BERT regressione testing: We observe a constant reduction of the response Currently FTFP BERT is $\simeq 20$ % off w.r.t. ATLAS

lower in Geant4 than in testbe ant4 validation study on the ATLAS HEC shows the same pattern.

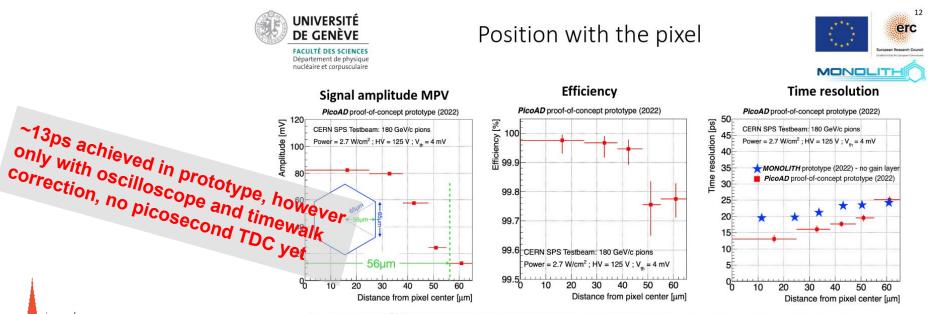
HEC

Monolith - Picosecond time stamping capabilities in fully monolithic *highly-granular pixel sensor* (Thursday)


https://indico.cern.ch/event/1232761/contributions/5321956/

PicoAD Gain characterization

Gain measured via point-like charge deposition inside the sensor of 5.9 KeV X-ray photons from 55Fe

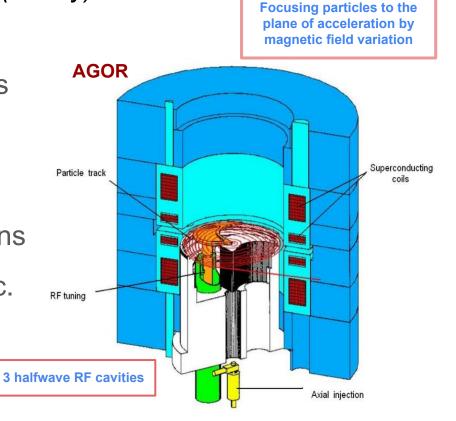


Théo Moretti - Université de Genève

11th BTTB Workshop

Monolith - Picosecond time stamping capabilities in fully monolithic highly-granular pixel sensor (Thursday)

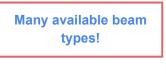
https://indico.cern.ch/event/1232761/contributions/5321956/

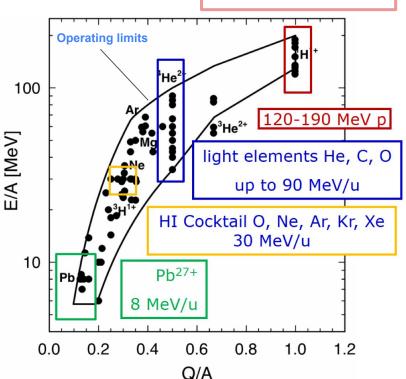

Best PicoAD [©] prototype time resolution: (13.2 \pm 0.8) ps within 25 μ m from pixel center 2022 prototype with no gain layer less dependent on position within pixel

Théo Moretti - Université de Genève

11th BTTB Workshop

The New **PA**rticle **T**herapy **RE**search **C**enter (PARTREC) at the UMC Groningen – Alexander Gerbershagen (Friday)


- Until 2013: mainly nuclear physics
- Superconducting AVF Cyclotron
- RF operating range: 24 62 MHz
- Acceleration of light and heavy ions
- beams up to 190 MeV, 90 MeV/nc.

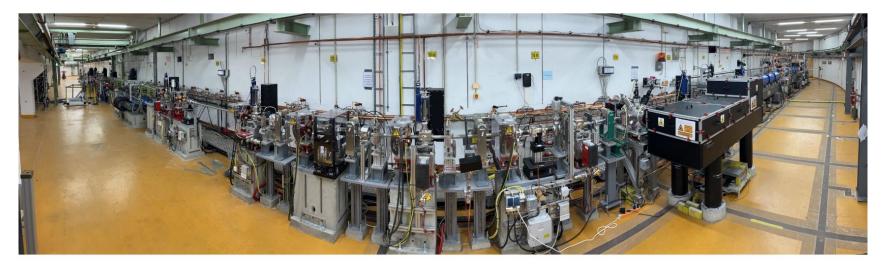


lons < e11

The New PArticle Therapy REsearch Center (PARTREC) at the UMC Groningen – Alexander Gerbershagen (Friday) Attainable Particles/s: Protons > e13

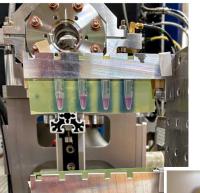

- Until 2013: mainly nuclear physics
- Superconducting AVF Cyclotron
- RF operating range: 24 62 MHz
- Acceleration of light and heavy ions
- beams up to 190 MeV, 90 MeV/nc.

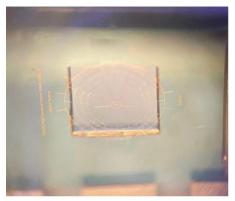
The New **PA**rticle **T**herapy **RE**search **C**enter (PARTREC) at the UMC Groningen – Alexander Gerbershagen (Friday)


- Exchange with treatment facility GPTC
- Infrastructure for Biomedical Research
- Upcoming:
 - New 3D X-ray beamline
 - Bioluminescence imaging
 - Pencil beam scanning
 - High-dose rates (> 1000 Gy/s)

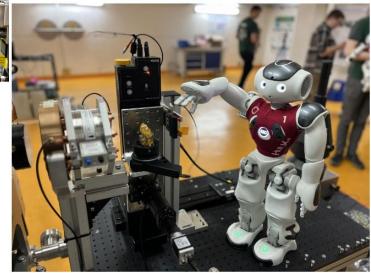
ARES Linac @ SINBAD - Florian Burkart

In operation since 2020


Normal conducting 160 MeV electron linac for the production of ultra-short electron bunches



ARES Linac @ SINBAD - Florian Burkart


R&D platform

- Accelerator components
- Detectors
- Beam controls & diagnostics
- Medical research
 - Novel cancer treatment
 - VHEE experiments with living cells
- Automation, machine learning, robotics
- Electron CT experiments

Micro-wirescanner 1 micron thick gold wires

