

News

PUNCH 4 N F D I

A. Straessner PUNCH4NFDI TA5 FPGA Meeting 22.05.2023

- FPGA workshop on June 15-16 at DESY
 - https://indico.desy.de/event/39234/
 - TA5-WP2/WP5 and XFEL
 - please, register
- 5 Sessions:
 - 1) TA5 internal: status and work on "deliverables" documenst (see last meeting and next page) ional archives (other TAs).
 - 2) Introductory session: overview of FGPAs and ML in particle physics, astrophysics and XFEL
 - 3) Workshop session 1 algorithms, tools, hardware
 - 4) Workshop session 2 algorithms, tools, hardware
 - 5) Workshop session 3 collaborative tools and services
- Your contributions are welcome!

- 3 documents are currently being edited related to PUNCH deliverables:
 - D-TA5-WP2-1: Curation & metadata schemes for dynamic filtering
 - see document attached to agenda <u>https://indico.desy.de/event/39151/</u>
 - D-TA5-WP2-2: Strategy concept for identifying highly complex (multi-parametric) signals in huge data streams
 - completion by June
 - see document attached to agenda <u>https://indico.desy.de/event/39151/</u>
 - D-TA5-WP3-1: Specifying the concept of a dynamic archive: Requirements in relationship to other WPs (information loss, dynamic filters, scalable workflows and simulated catalogs) as well as to information in traditional archives (other TAs).

Deliverables related to FPGA based PUNCH work in TA5 WP2/WP4/WP5

Deliverables:

- D-TA5-WP2-1 (31 Mar 2022): Curation & metadata schemes for dynamic filtering.
- D-TA5-WP2-2 (31 Mar 2022): Strategy concept for identifying highly complex (multi-parametric) signals in huge data streams.
- D-TA5-WP2-3 (30 Sep 2023): Test environment for identifying highly complex (multi-parametric) signals in huge data streams using MeerKAT data.
- D-TA5-WP2-4 (30 Sep 2024): Generic tool to convert trained neural networks into efficient HLS/VHDL FPGA firmware optimised for a real-time, low-latency environment.
- D-TA5-WP2-5 (30 Sep 2025): Algorithms for massively parallel real-time sorting, clustering and pattern recognition on specialised hardware.
- D-TA5-WP2-6 (30 Sep 2025): Algorithms and Machine Learning methods for filtering and selecting relevant transient/anomalous signals.
- D-TA5-WP2-7 (30 Sep 2026): Pipeline for anomalous signal detection with low false-alarm probability for multi-messenger follow-up.

Deliverables:

- D-TA5-WP4-1 (31 Mar 2022): Porting common off-line packages (e.g. CASA) to a memorybased computing prototype to prepare analysis of "data monster".
- D-TA5-WP4-2 (30 Jun 2024): Standard software (e.g. CASA) compatible with Gen-Z.
- D-TA5-WP4-3 (31 Mar 2025): Caching strategies for processing a set of benchmark files with the evaluated efficiencies and latencies.
- D-TA5-WP4-4 (30 Jun 2025): Porting CASA to a HPC platform with appropriate scaling.
- D-TA5-WP4-5 (30 Jun 2025): Concepts for the optimisation of the hard/software co-design for CPUs which include GPU or FPGA features.
- D-TA5-WP4-6 (30 Jun 2026): Efficient real-time data processing framework.
- D-TA5-WP4-7 (30 Jun 2026): Scaled feedback interfaces between off-line software (e.g. CASA) and (selected) real-time processes using MeerKAT data.

Deliverables:

- D-TA5-WP3-1 (31 Mar 2023): Methods by which one or more dynamic archives can be jointly queried and interpreted in the presence of information loss.
- D-TA5-WP3-2 (30 Sep 2024): Methods for transforming a dynamic archive query into a dynamic filter (and vice versa).
- D-TA5-WP3-3 (30 Sep 2026): Complete dynamic filter / archive feedback loop.

Deliverables:

- D-TA5-WP5-1 (30 Sep 2024): Development and implementation of machine learning prototypes for anomaly detection, predictive maintenance and process control.
- D-TA5-WP5-2 (30 Sep 2024): Interference recognition and mitigation schemes for transient discovery leading to a "robust" triggering system for multi-messenger follow-up.
- D-TA5-WP5-3 (30 Sep 2026): Expansion of the concept to a generalized toolkit for predictive maintenance and anomaly detection.
- D-TA5-WP5-4 (30 Sep 2026): Evaluation of false-alarm rates and improvements via machine learning, dynamic queries, on-line feedback and modification of archive metadata