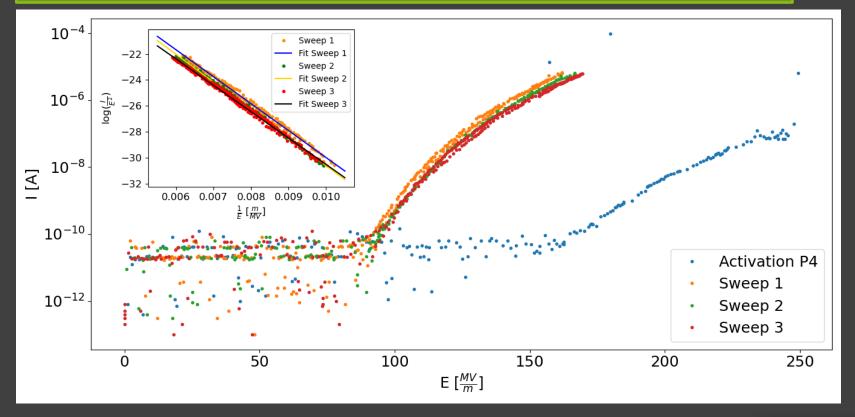


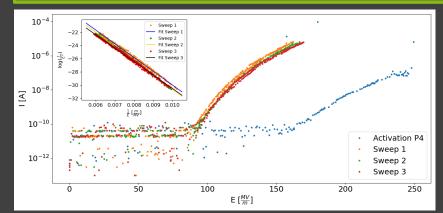
2. NOVALIS Meeting – Update BUW

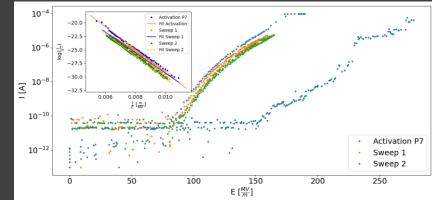
Frederic Braun
fbraun@uni-wuppertal.de
Dirk Lützenkirchen-Hecht
dirklh@uni-wuppertal.de

State of the FESM


- Current state
 - Power supply is back and installed again
 - Measurements on single spots are possible
 - Activation curves
 - Emission curves
- Planned for the future
 - Overhaul Software
 - Implementing mapping of areas
 - Constant current
 - Constant voltage

Measurements on NbTiN-Films


- Samples prepared by Isabel
- Film thickness: 60 nm NbTiN on 20 nm AlN
- Two types of samples
 - As-depostied
 - Annealed
- FESM measurements on several spots
 - Activation curves
 - Emission curves on activated surfaces
- SEM images of the surface after activation


FESM measurements on NbTiN-Films: Results Sample 1 (Annealed)

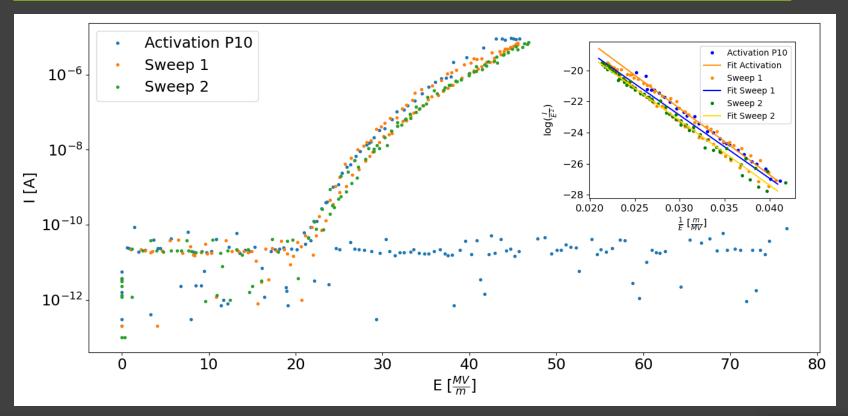
FESM measurements on NbTiN-Films: Results Sample 1 (Annealed)

- Onset field for field emission at 182 MV/m
- Full activation of the surface at 250 MV/m
- After activation surface follows Fowler-Nordheim-Theory of field emitters
- Onset field for field emission at 168 MV/m
- Full activation of the surface at 277 MV/m
- After activation surface follows Fowler-Nordheim-Theory of field emitters

FESM measurements on NbTiN-Films: Results Sample 1 (Annealed)

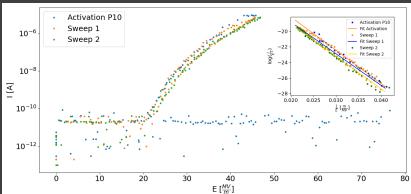
Fitting the data yields flucguaging fit parameters

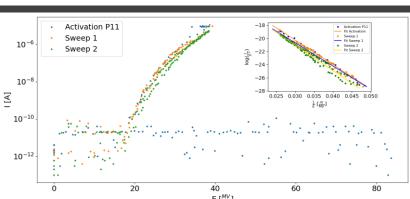
- Unknown work function leads to large errors
- Different spots yield different parameters with partly strong deviation from each other


Fitparameter for P4:

- Working function φ: 2.79 eV
- Geometry factor of the tip β: 35.4
- Effective emission area S: 1.1e-18 m²

Fitparameter for P7:


- Working function φ: 3.10 eV
- Geometry factor of the tip β: 52.09
- Effective emission area S: 4.8e-19 m²

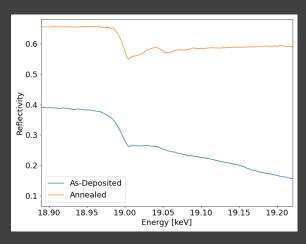

FESM measurements on NbTiN-Films: Results Sample 2 (As-Deposited)

FESM measurements on NbTiN-Films: Results Sample 2 (As-Deposited)

- Full activation of the surface at 76 MV/m
- ф: 2.39 <u>eV</u>
- β: 112.39
- S: 4.28e-15 m²

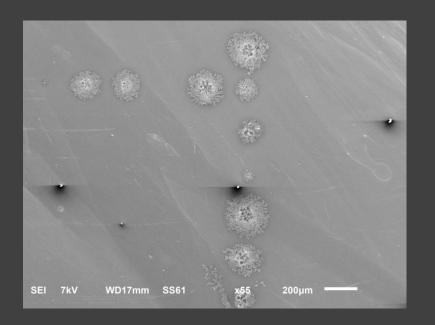
- Full activation of the surface at 83 MV/m
- ф: 2.42 eV
- β: 131.45
- S: 7.14e-20 m²

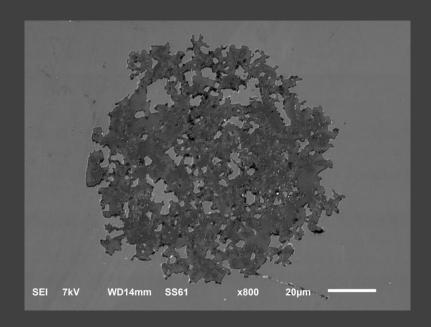
FESM measurements on NbTiN-Films: Annealed vs As-Deposited


Annealing the samples leads to structural changes according to grazing incidence EXAFS measurements. Accordingly, an increase of the activation threshold for field emission was found

Annealed

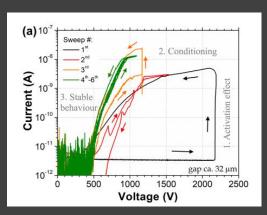
Spot	Full Activation [MV/m]
2	158
3	402
4	249
6	308
7	277
8	296
9	277
Average	281


As-Deposited


Spot	Full Activation [MV/m]
3	109
4	125
5	86
6	119
9	94
10	76
11	83
12	71
Average	95

Grazing incidence EXAFS at Nb-K-Edge

SEM measurements on NbTiN-Films



Activation of the sample destroys the film coating locally

FESM: What can be done differently?

- Testing the long term stability of the samples under a certain well-defined tunnel current
 - Investigate if current rises over time
 - Is a full activation with this method possible?
- Testing the reproducibility of the current development before the full activation
- Limiting the max. current with resistors instead of using the power supply
 - Power supply regulates current too slow → Surface gets damaged

Rev. Sci. Instrum. 91, 083906 (2020)

Thank you for your Attention

