Hadronic Models Meeting

Erik Dieckow

Humboldt Universität zu Berlin

April 25, 2023

Erik Dieckow (HU)

Hadronic Models Meeting

∃ > April 25, 2023

< ∃ →

Image: Image:

pi0

<ロ> <部> <部> <き> <き>

æ

Comparison pO/pp

pseudorapidity range of LHCf: $|\eta| > 8.4$

Figure: proton oxygen collision, pi0 η range

Figure: proton proton collision, pi0 η range

< 1 →

April 25, 2023

∃ ► < ∃</p>

Comparison pO/pO fixed target

pseudorapidity range of LHCf: $|\eta| > 8.4$

pi0 proton-Oxygen central

Figure: proton oxygen central collision, pi0 η range

proton oxygen fixed-target

Figure: proton oxygen collision fixed target, pi0 η range

< ロ > < 同 > < 回 > < 回 > < 回 > < 回

Comparison pp fixed target/pO fixed target

pseudorapidity range of LHCf: $|\eta| > 8.4$

pi0 proton-Oxygen fixed-target

pi0 proton-proton fixed-target

Figure: proton oxygen collision fixed target, pi0 η range

Figure: proton proton collision fixed target, pi0 η range

< ロ > < 同 > < 三 > < 三

Neutrons

Eri	k D	iec	kow	(۲	HU)
-----	-----	-----	-----	----	-----

æ

・ロト ・雪 ・ ・ ヨ ・ ・ ヨ ・

Oxygen remnant side

pseudorapidity range of LHCf: $|\eta| > 8.4$

Figure: proton oxygen collision, neutrons η oxygen remnant side

neutrons, proton-oxygen central, log plot

Figure: proton oxygen collision, neutrons η oxygen remnant side

<ロト < 部ト < 注下 < 注</p>

neutrons, proton-oxygen central

pseudorapidity range of LHCf: $|\eta| > 8.4$

neutrons, proton-Oxygen central

neutrons, proton-Oxygen, log plot

Figure: proton oxygen collision, neutrons η , proton remnant side

Figure: proton oxygen collision, neutrons η , proton remnant side

< ロ > < 同 > < 回 > < 回 > < 回 > < 回

Comparison pO/pp

pseudorapidity range of LHCf: $|\eta| > 8.4$

neutrons, proton-Oxygen central

Figure: proton oxygen collision, neutron η range

neutrons, proton-proton central

Figure: proton proton collision, neutron η range

ヘロト ヘヨト ヘヨト ヘヨ

Comparison of p-O plots central/fixed-target

pseudorapidity range of LHCf: $|\eta| > 8.4$

neutrons, proton-Oxygen central

neutrons, proton-Oxygen fixed-target

Figure: proton oxygen collision fixed target, neutron η range

• □ ▶ • □ ▶ • □ ▶

range

< E

Comparison of fixed-target plots

pseudorapidity range of LHCf: $|\eta| > 8.4$

neutrons, proton-Oxygen fixed-target # of Events f Events proton-Oxygen-fixedTarget (s=9.9 TeV lumi; (2nb) PYTHIAS EPOSLHC OGS/JETII04 QGSJET SIBYLL 300 200

Figure: proton oxygen collision fixed target, neutron η range

neutrons, proton-proton fixed-target

Figure: proton proton collision fixed target, neutron η range

< ロ > < 同 > < 三 > < 三

Energy plot comparison

pseudorapidity range of LHCf: $|\eta| > 8.4$

neutrons, proton-Oxygen, fixed-target

Figure: proton-proton collision, energy spectrum

<ロト < 部ト < 注下 < 注</p>

Erik Dieckow (HU)

Hadronic Models Meeting

Momentum plot comparison

pseudorapidity range of LHCf: $|\eta| > 8.4$

neutrons, proton-Oxygen

Figure: proton-Oxygen collision, momentum spectrum

neutrons, proton-proton

Figure: proton-proton collision, momentum spectrum

ヘロト ヘヨト ヘヨト ヘヨ

protons

Erik Dieckow (HU)	kow (HU)
-------------------	----------

臣

・ロン ・雪 と ・ ヨ と ・ ヨ と

Comparison pO pp fixed target, log plot

pseudorapidity range of LHCf: $|\eta| > 8.4$

Figure: proton-Oxygen collision, fixed-target, η

Figure: proton-proton collision, fixed-target, η

< □ > < 同 > < 回 > <</p>

April 25, 2023

Comparison pO pp fixed target

pseudorapidity range of LHCf: $|\eta| > 8.4$

protons, proton-Oxygen, fixed target, log plot

protons, proton-proton, fixed-target, log plot

Figure: proton-Oxygen collision, fixed-target, η

Figure: proton-proton collision, fixed-target, η

< □ > < A >

- ₹ 🖬 🕨

- proton-Oxygen discrepancies over whole η range, for central and fixed-target collisions
- proton-Oxygen, fixed-target: Pythia peak
- fixed-target plots: negative η for Pythia and DPMJET
- proton-proton discrepancies in forward region
- EPOSLHC behavior for high negative η
- LHCf can measure most interesting area
- cuts for various generators at high/low pseudorapidity

Backup

Eri	k D	iecl	kow	(H	IU)

▲□▶ ▲□▶ ▲ □▶

æ

Acceptance for different event Generators

Acceptance for different event Generators

Figure: QGSJET proton distribution

Acceptance for different event Generators

Acceptance for AFP

Figure: AFP far Station for crossing angle for 20 muRad

Figure: AFP far Station crossing angle 340 muRad

- difference mostly in not relevant area of pt/energy loss.
- most acceptance for high absolute value of the crossing angle

Acceptance for ALFA

Figure: ALFA near Station for crossing angle for 20 muRad

Figure: AFP Far Station crossing angle 340 muRad

higher crossing angle results in higher acceptance

AFP Event Rate dependancy on crossing angle

Figure: AFP Near Station

Figure: AFP Far Station

small correlation between event rate and crossing angle

ALFA Event Rate dependancy on crossing angle

Figure: ALFA Near Station

Figure: ALFA Far Station

higher crossing angle results in higher event rate for all generators