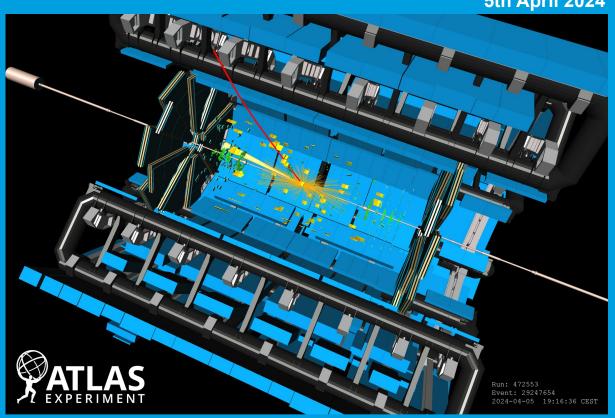
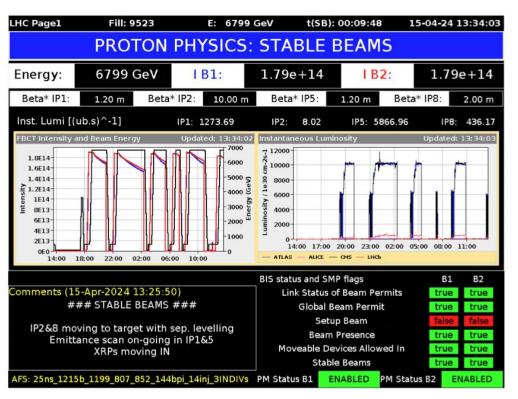
ATLAS highlights and LHC status

97th PRC meeting

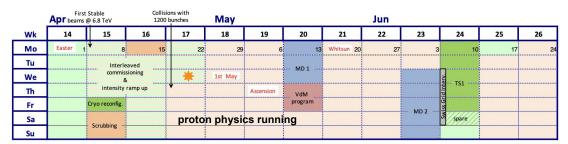
Lydia Beresford on behalf of the DESY-ATLAS group

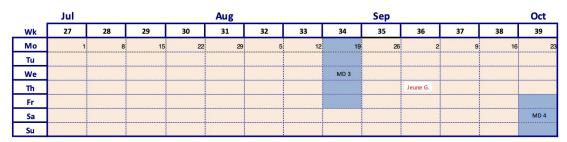


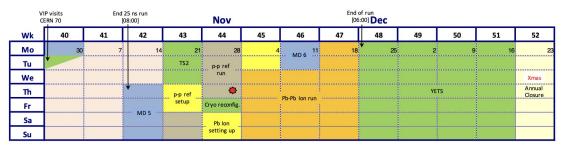

LHC Status

5th April 2024

LHC re-commissioning and intensity ramp


LHC re-commissioning while ramping beam intensity (increasing number of bunches)




LHC schedule

- 5 April: 1st 13.6 TeV stable-beams
- Intensity ramp: reached 1800 b, 2400 b planned
- 10 days ahead of ramp schedule (similar to last year)
- Decision to shift extended year-end technical stop by 4 weeks (not extra beam time)
- Begin: 25 Nov 2024
- Machine checkout (cavern closed): 2 Apr 2025
- Beam recommissioning: 7 Apr 2025

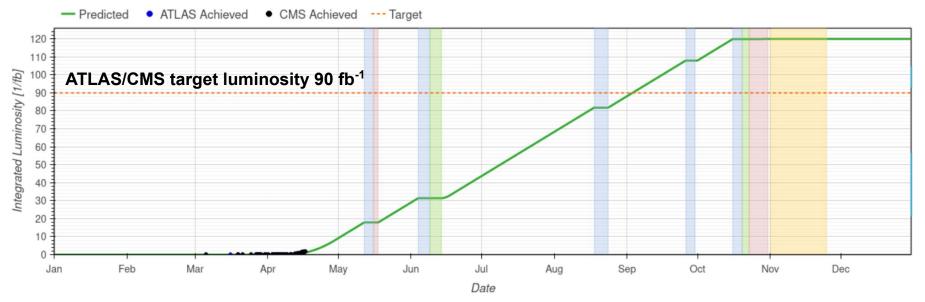
Current 2024 schedule: <u>v2.0 27 March 2024</u>

★ = Today

New <u>draft schedule</u> for 2025

LHC luminosity status

Delivered 2024 luminosity so far


Preliminary 17.04.24

◆ ATLAS: 1.525 fb⁻¹

+ CMS: 1.534 fb⁻¹

- LHCb: 0.0188 fb⁻¹

★ ALICE : 0.00228 fb⁻¹

[Generated at: 2024-04-17 22:18:55]

ATLAS DESY group

ATLAS overview

Many leadership roles within ATLAS & beyond

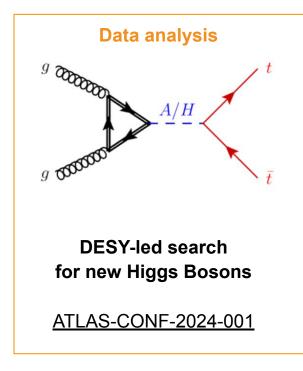
Expertise in wide range of ATLAS analysis & object performance

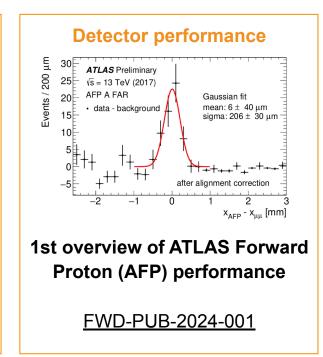
- Identification and calibration of:
 Jets, b-jets, electrons, photons
 and forward protons
- Tracking for current and upgraded detector
- SM measurements & searches for new phenomena

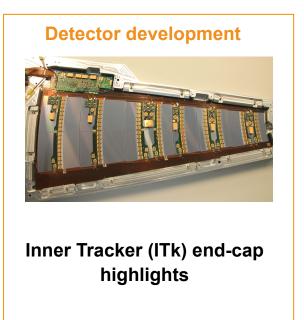
ATLAS detector operation & computing

- Operation, monitoring & calibration of **SCT and luminosity** measurement
 - Leading roles in ATLAS computing and software
- Monte Carlo, data reprocessing and modelling of physics processes

Upgrade of the ATLAS detector


- Design, test and assembly of future ATLAS tracking detector for HL-LHC (ITk)
- DESY will provide a full end-cap of the new ITk detector


DESY.


ATLAS outline

Since last PRC: 17 papers published, 6 submitted, 4 public notes, 4 non-ATLAS papers

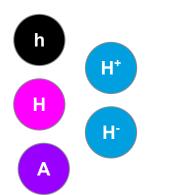
Today highlight just a few achievements:

Search for heavy neutral Higgs bosons decaying to a top quark pair in 140 fb⁻¹ of √s=13 TeV pp collision data

ATLAS-CONF-2024-001

DESY initiated & led analysis: analysis contact, editors, key analysers
Katharina Behr LHC <u>seminar</u> on 19th March

Why Two-Higgs-Doublet Models?


Many BSM models involve extended Higgs sectors:

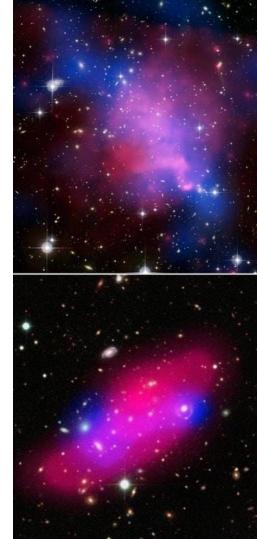
Hierarchy problem? Dark matter? ...

Simple extension consistent with existing constraints: 2HDMs

Search for heavy Higgs: pseudo-scalar (A) & scalar (H) \rightarrow t

Considers several models including 2HDM+a for 1st time

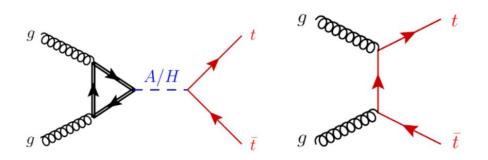
Assuming CP-conserving potential


Today focus on hMSSM

 $h = h_{SM}$

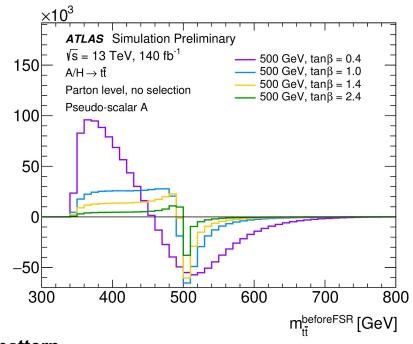
Only 2 free parameters: $m_A \& tan \beta$

SUSY particles assumed to be heavy

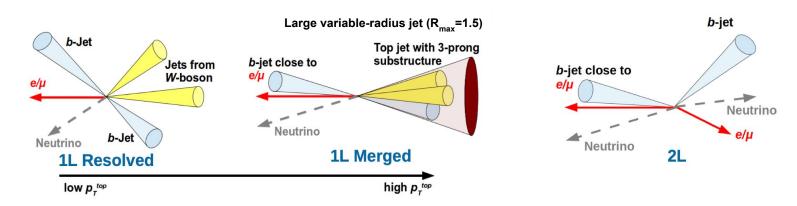


Signal process and interference

Dominant BR of A/H to tat high mass & low tan \(\beta \)


Signal process interferes strongly with irreducible background from SM tevents

Events

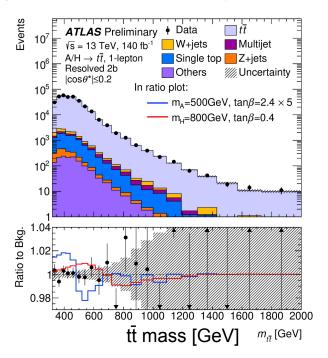

- Peak-dip structure instead of Breit-Wigner peak
- Highly model-dependent

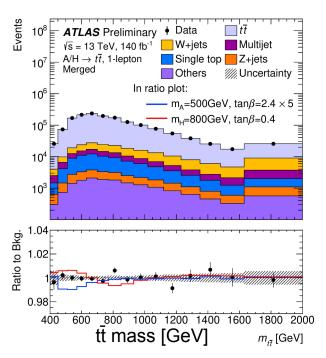
Larger $tan\beta$ \Longrightarrow Smaller total width \Longrightarrow Narrower pattern

Analysis strategy

Target 1L (e, μ) and 2L (ee, $\mu\mu$, e μ) $t\bar{t}$ ecays & exploit spin information; 16 regions total

Final discriminant: reconstructed H/A mass (1L: m_H, 2L m_{LI bb} as proxy)


Improvements wrt Run 1 result:


- Include 2L & 1L Merged
- Reweight SM tt bkg to NNLO-QCD+NLO EW
- Improved statistical treatment
- Wider range of benchmark models (hMSSM, 2HDM+a, model-agnostic interpretation)

DESY. Diagram by Katharina Behr

Legacy result using 140 fb⁻¹ of Run-2 data

Search stage: test data vs S + I + B hypotheses agreement for masses [400, 1400] GeV, widths [1,40]%

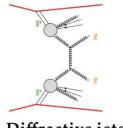


No statistically significant deviation from SM: Largest 2.3 σ local (m_a = 800 GeV, Γ_a / m_a = 10% & $\sqrt{\mu}$ =4.0)

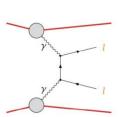
DESY.

Legacy result using 140 fb⁻¹ of Run-2 data

Strongest constraints on 2HDM & hMSSM parameter space for low $tan\beta$ + high A/H mass

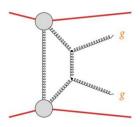

Performance of the ATLAS Forward Proton Spectrometer during High Luminosity 2017 Data Taking

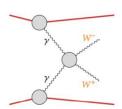
FWD-PUB-2024-001


DESY key analysers & current forward proton coordinator

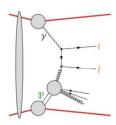
Forward proton motivation

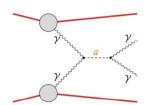
Intact forward scattered protons are a key signature of various diffractive & photon-induced processes


Diffractive jets
ATL-PHYS-PUB-2017-012

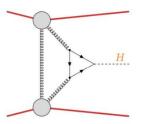

CMS 1803.04496 ATLAS 2009.14537

Leptons

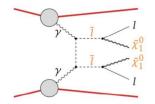

DESY.


Exclusive jets
Trzebinski et al 1503.00699
Harland-Lang et al 1405.0018

W bosons
Tizchang, Etesami 2004.12203
Baldenegro et al 2009.08331

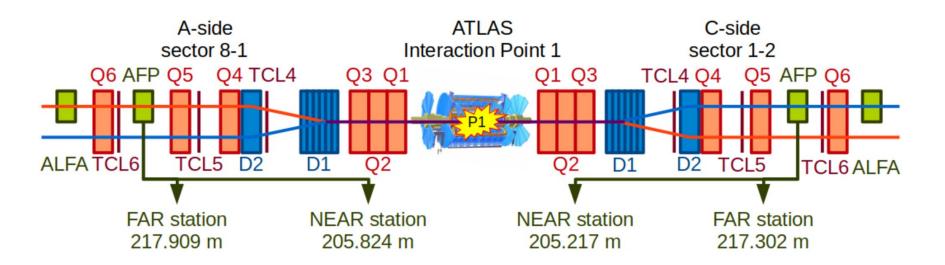


Top quarksGoncalves et al 2007.04565
Howarth 2008.04249



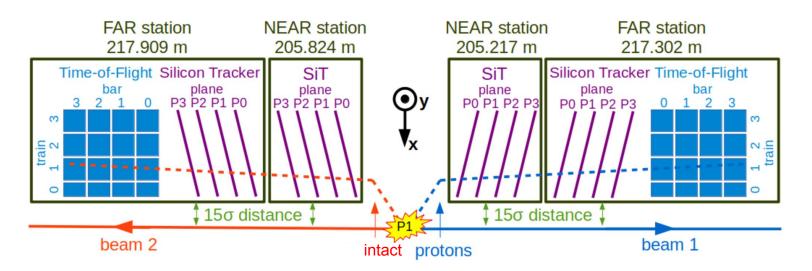
Axion-like particles
Harland-Lang & Tasevsky 2208 1052

Higgs boson
Cox et al 0709.3035
Heinemeyer et al 0708.3052



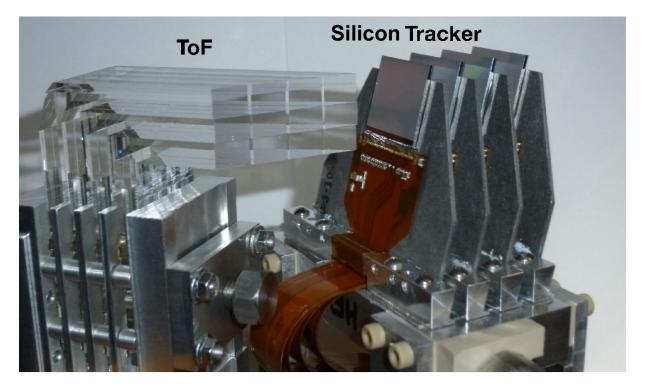
SUSY dark matter

Beresford & Liu 1811.06465 Harland-Lang et al 1812.04886


ATLAS Forward Proton (AFP) detectors

- Measure them using ATLAS Forward Proton (AFP) detectors
- Provides powerful background rejection:
 - New kinematic information e.g. total missing momentum by combining AFP & central ATLAS
- Need to precisely identify and calibrate protons for use in physics analysis

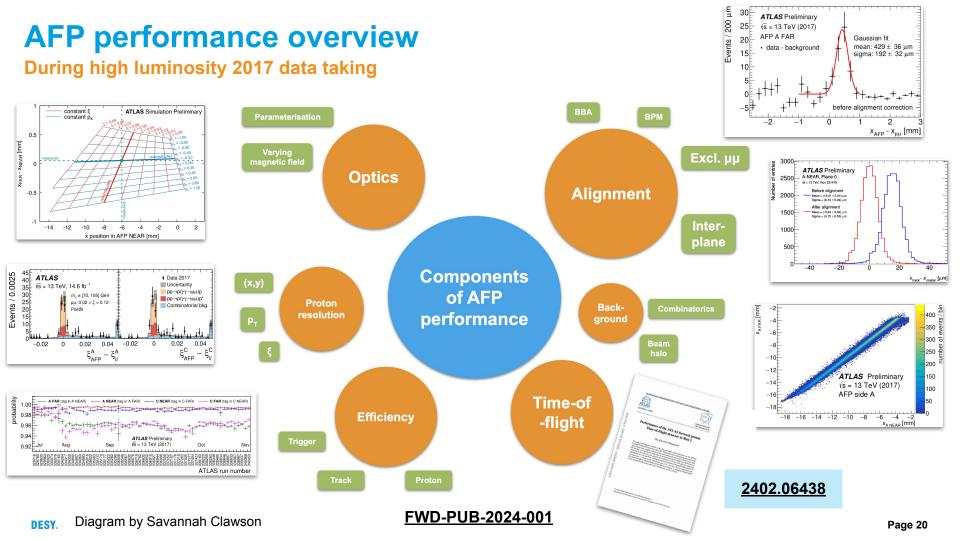
DESY.


ATLAS Forward Proton (AFP) detectors

- Silicon Tracker (SiT) with four planes of pixels in each station
 - Pixel hits → pixel clusters → tracks (per station) → proton
- Time-of-Flight (ToF) detectors in FAR stations
- Housed in Roman Pots, inserted to within ~2 mm of the beam

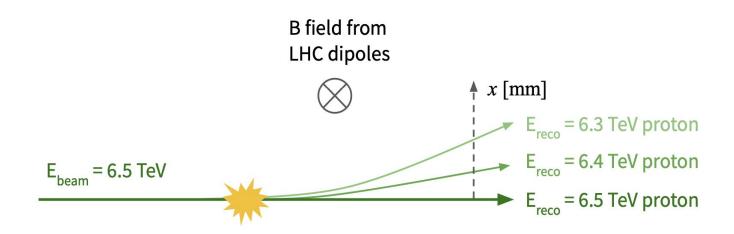
DESY.

ATLAS Forward Proton (AFP) detectors

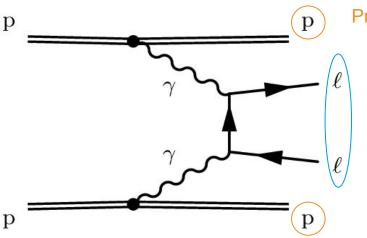


Cherenkov detector L-shaped quartz bars Microchannel Plate PMT

~30 ps timing resolution


3D silicon pixels like ATLAS insertable B-layer (IBL) 'slim-edge' ~100 µm

Active area 1.68 x 2 cm²

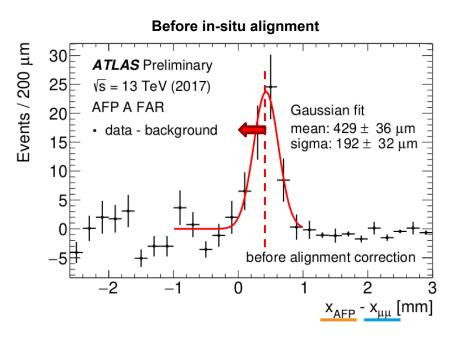

AFP in-situ global alignment

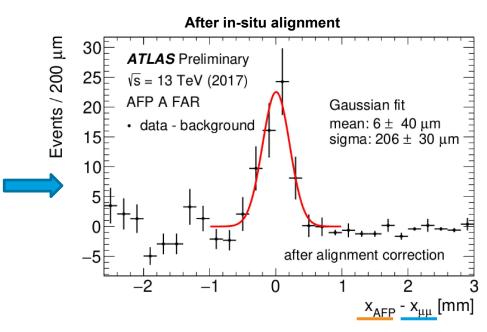
Position protons hit AFP SiT x_{AFP} depends on relative proton energy loss $\xi_{AFP}^{A,C} = 1 - E_{\frac{reco}{E_{beam}}}$

AFP in-situ global alignment

After inter-plane alignment & beam based alignment perform final in-situ step of global alignment

Proton position measured with AFP: **x**_{AFP}

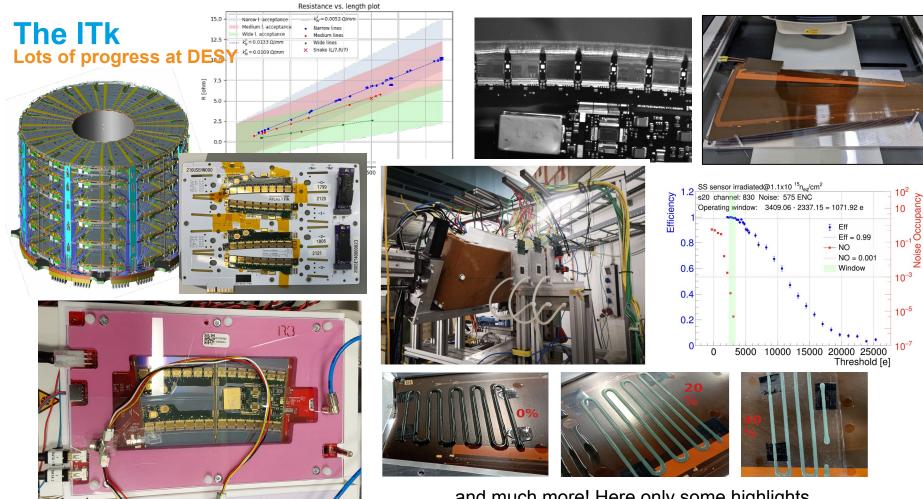

Predict proton position using $\mu\mu$ measured with ATLAS central detector:


$$\xi_{\mu\mu}^{\pm} = \frac{\mathbf{m}_{\mu\mu}}{\sqrt{s}} \mathbf{e}^{\pm y\mu\mu}$$
 mapped to $\mathbf{x}_{\mu\mu}$

Novel technique: Tag & probe using main ATLAS detector & AFP

AFP in-situ global alignment

Fit and shift x_{AFP} - $x_{\mu\mu}$ for each station \rightarrow Alignment constants



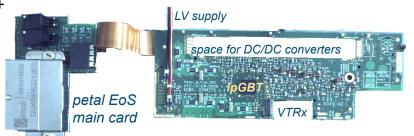
Systematic uncertainty of ± 300 µm in Run 2

DESY performing in-situ global alignment for Run 3

ATLAS detector upgrade Inner Tracker (ITk) end-cap

Huge DESY endeavor: responsible for building one ITk end-cap & more

... and much more! Here only some highlights


In Production: End of Substructure (EoS) Card

QC = quality control QA = quality assurance

Gateway between on- and off-detector systems – data, communication, power

- DESY is building EoS cards for endcap and barrel ITk strips
- Designed at DESY around the CERN ASICs: lpGBT and VTRx+

off-detector 10 GB optical off-detector LV and HV

Main EoS card for petal. Space for DC/DC converters and VTRx.

Pre-production with prototype and final ASICs finished. Production started

- Deliverable: a total of 1552 cards plus spares
 - 2 types of cards for end-caps
 - 12 types of cards for barrel (due to geometry)
- Cards from industry, loading and testing at DESY
- Elaborated QC chain, including e.g. bond pad pull test, X-ray, optical and IR imaging, etc.
- Pre-production: 130 cards for card QA and petal & stave population
 DONE

Production:

- 75% of all electrical test structure delivered
- EoS cards: >40 cards done (~3%)
- EoS card production is not going to limit petal or stave production

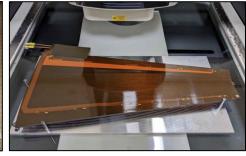
DESY. Page 26

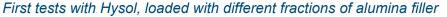
Building fully loaded Petals

Pre-production ongoing - input to ongoing studies

- Production of parts for petal cores in-house well under way
- First six petal cores produced in industry and about to get QC'ed
- First pre-production-B petal (final parts) fully loaded at DESY
- DESY strongly contributing to ongoing studies to get ready for production

DESY is ready to produce and complete fully loaded petals.



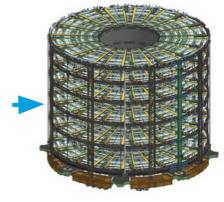

Thermal foam set (60% blocks received)

Pre-production core undergoing geometrical metrology

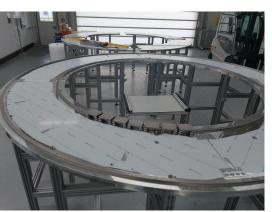
First PPB fully loaded petal@DESY

Moving towards Full End-cap

Getting ready for petal installation


- The skeleton for the DESY end-cap (EC1) is ready at Nikhef
 - Getting ready for transport to DESY in early July
- Cooling infrastructure in commissioning
- Petal insertion procedure proven in system test at DESY and in the EC structure at Nikhef
 - All needed hardware in hands
- Assembly platforms delivered last week

DAF in Building 26 is filling up and getting ready for the full end-cap


Comment: pics to be replaced by new ones before PRC

EC1 mounted on the superframe@Nikhef

CAD of fully loaded EC

Tower platform (left) and access platform (right) built at company

DESY.

Summary

Beams are back: 2024 proton running in progress

DESY ATLAS:

- Making significant contributions to detector operations, performance, tools & software
- Leading role in many impactful data analyses yielding exciting new results & publications
- Team fully committed to the ATLAS upgrade and delivering a whole end-cap for the ITk Detector

DESY. Page 29

Backup

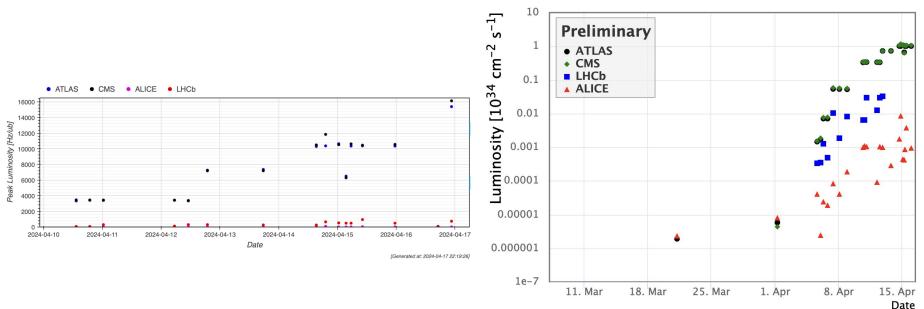
DESY. Page 30

LHC luminosity status

- Peak luminosity slightly higher for CMS than ATLAS (1-2%)
- Update of CMS calibration may increase difference
- Update by ATLAS on 1 May may reduce it again

Delivered 2024 luminosity

Preliminary


◆ ATLAS: 1.525 fb⁻¹

→ CMS: 1.534 fb⁻¹

- LHCb: 0.0188 fb-1

★ ALICE : 0.00228 fb⁻¹

Peak luminosity in 'Stable Beams'

