ILDG Services and Middleware

Working Groups

Hands-on Workshop

June 14, 2023

- 1. Use cases
- 2. Distributed Web Services
- 3. Basic ILDG Services
- 4. Interacting with ILDG Services

ILDG needs to support 4 different use cases (and user requirements) for sharing and exchanging of gauge configurations:

	data prodvider	data consumer
community-wide sharing ("public" or "published"?)	r	~
collaboration-internal sharing (initial "embargo" restrictions)	~	V

Data provider:

- store precious (meta) data somewhere at no cost (human and storage resources)
- declare it public
- get it used by others
- receive credits/citations

Data consumer:

- we somehow know about existence of interesting and useful data
- get the data at no cost (human and CPU)
- use data freely to do high quality research
- generously acknowledge the source of the data

Data sharing within or between Collaborations

Data provider:

- follow a well-defined and smooth workflow
- public and internal data can be handled in the same way (no extra efforts at end of embargo times)
- public data is also published and citable
- efforts are rewarded by funding agencies

Data consumer:

- everything is known about our configs (location, tracking, reliability, ...)
- we have a clear data managment plan
- data stewards take care of all our (meta)data
- usage rules are well defined and known

Naive Data Sharing

Data (bits) without meta data (= information about a digital object) is useless!

Naive (Meta-) Data Sharing

- Many kinds of metadata (MD): format, content, provenance, access policies, ... F2, R1
- (Meta-)data objects must have persistant (globally) unique identifier(s) F1, A1

Naive (Meta-) Data Sharing

- Many kinds of metadata (MD): format, content, provenance, access policies, ... F2, R1
- (Meta-)data objects must have persistant (globally) unique identifier(s)
- Standards and (community-specific) conventions

F1, A1

A1. R1.3

F4

\$\$

T File system:

- identifier = name and path of files (?)
- metadata = content of files (separate or combined with data) and other attributes (e.g. permissions)

🗖 Database:

- identifier = primary key
- metadata + data (!) = "attributes"

Problem: data objects in LQCD are relatively large

- metadata needs to be stored separately from data for efficient searching
- storage hardware (in practice) needs to be distributed over different sites (institutions, funding agencies, countries, ...)
- → Distributed web services

key	metadata	data
•	•	•
•	•	•

Distributed Web Services

Not (just) web pages!

- grid (or cloud) storage elements (SE)
- central Metadata Catalogue(s) (MDC)

ILDG operates only 2 global services

- VO registration (VOMS) registry of ILDG users (groups and roles) used for authentication to storage elements
- Web page (temporary) specification of standards and conventions URLs of services of each regional grid (Services.xml)

- Under construction!
- VO Policy
- Specifications:
 - metadata schema
 - file formats
 - working groups
 - URLs of services
- (Incomplete) user documentation

Membership of the Virtual Organization "ILDG"

- identity = grid certificats from trusted CAs (IGTF)
- membership = VOMS hosted at DESY

Membership of the Virtual Organization "ILDG"

Currently: (ILDG 1)

- identity = grid certificats from trusted CAs (IGTF)
- membership = VOMS hosted at DESY

Future: (ILDG 2)

- identity = token from trusted IdPs (e.g. home institutions in eduGAIN)
- membersiip = IAM (Identity and Access Management) hosted at CNAF/INFN

The Need for trusted Identity Proofing

Service providers used by ILDG require a reliable identification of users, e.g. for

- storage (even for read-access only!)
- fast (!) network connections
- → Federations of CAs/IdPs which can guarantee a well-defined Level of Assurance (LoA)
- → Users need to respect rules AUP: SPs ↔ users VO Policy: users ↔ users

AARC Acceptable Authentication Assurance Policy

Autonomous Regional Grids

Services operated by each Regional Grid

- Metadata Catalog (MDC)
- File Catalog (FC)
- Storage Elements (SE)
- Website with RG-specific information

Regional Grids: CSSM, JLDG, LDG, UKQCD, USQCD

- are implemented with different architectures and technologies
- operate in an autonomous way with individual policies

Examples

- JDLG: single SE, no specific access control
- LDG: multiple SE, fine grained access control

- Single federated storage system (GFARM)
- JLDG-internal write access
- Fast read access (gridftp) available for VO members
- Transition to token-based authentication

T. Yoshie

USQCD Ideas

K. Chard et al. 2017

Interplay between ILDG Services

Metadata Catalogue (MDC)

Key purpose: ID regisration and metadata search

 $\mathsf{ID}\longleftrightarrow\mathsf{metadata}$

Database schema

	metadata collection name			
	config	ensemble	publication (?)	
primary key:	LFN (dataLFN)	MCU (markovChainURI)	DOI (?)	
attributes:	QCDml tree	QCDml tree	t.b.d.	
	MCU	license (not yet)	list of MCU	
			DataCite metadata	

Basic operations

* Search: query $ ightarrow$ list of IDs	(supporting powerful Xpath queries)	F4
* Retrieve: $ID \rightarrow MD$	(QCDml schema)	A1
• Validate, insert, update, delete	,	

File Catalogue (FC)

Provides: functional (many-to-one) relation

$$\mathsf{FC}:\mathsf{SURL}\longrightarrow\mathsf{LFN}$$

Database schema

primary key: SURL (Storage URL) attributes: LFN MCU (or other optional Access Control Attributes)

Basic operations

- * list entries (SURL) by LFN
- list by other criteria (SURL, Access Control Attributes)
- insert, update, delete, ...

Δ1

New Implementation of MDC and FC

(by Basavaraja BS @ DESY/NIC)

Technical details

- configurable, e.g. for additional collections (beyond ensembles and configs)
- additional attribute service for access control (ACS)
- REST API (see online documentation MDC, FC, and ACS)
- simple deployment (Docker containers, Kubernetes in preparation) e.g. for other regional grids or applications
 - JLDG: 60 ensembles, 40 k configs
 - LDG: 2 instances, 250 ensembles, 250 k configs (not yet consistent with SE)
 - UK: in preparation

Interaction with ILDG Services

- □ Catalogues of all regional grids are interoperable due to standardized API
- \Box High-level user operations may need several (≤ 10) low-level requests (e.g. HTTP) but still few compared to other web pages (implicitly handled by your browser)
 - www.google.com: O(25) requests
 - www.github.com: O(100) requests
 - your favourite airline: O(200) requests

Consistency of ILDG Data

 \square ILDG is logically a distributed relational database with 2 kinds of entities

- configs: metadata + (binary) data
- ensembles: metadata
- and corresponding primary keys
 - LFN (dataLFN):
 - MCU (markovChainURI): mc://rg/collaboration/project
- ☞ Persistence and globally unique identifiers needs to be guaranteed by data providers.

lfn://rg/collaboration/project/name

- □ Typical inconsistencies (RDB anomalies) may arise from
 - failures of individual services
 - incorrect use of low-level tools

and can only be

- detected and fixed by regular scans (with possibly prohibitive cost)
- checked and handled by high-level tools (including roll-back)

Use Cases and "Itools"

Consumer (collaboration internal)

- lfind: search in metadata catalog
- lget: download data and metadata

linit: register ensemble metadata
lput: upload config data and metadata

• lpack: generate markup^{*)} and pack data

Consumer (community wide)

- optionally also use common search engines
- cite DOIs when using published data

Provider (community wide)

Provider (collaboration internal)

- optionally register DOI and generate landing page
- drop access restriction flag
- receive data citation record
- *) trivial if information is already collected during production!

Examples of Interactions with ILDG Services

- \square "Login" to ILDG: <code>voms-proxy-init</code>
 - periodically (\leq 2 days) download latest CRLs
 - unlock your private key (by pass phrase) or login at your IdP
 - request VO membership info and attributes
 - generate VOMS proxy
- □ "Get" config data (for specific and known LFN)
 - optionally download config (and ensemble) metadata
 - authenticate with proxy to FC and request SURL list
 - authenticate to SE and download data
- □ "Put" config data (for existing ensemble)
 - upload config metadata
 - decide SE and SURL (agreed with RG admin)
 - register SURL
 - upload binary

 \leftrightarrow VOMS \mid IAM

- $\begin{array}{l} \longleftrightarrow \mathsf{MDC} \\ \longleftrightarrow \mathsf{FC}/\mathsf{AC} \\ \longleftrightarrow \mathsf{SE}/\mathsf{AC} \end{array}$
- $\longleftrightarrow \mathsf{MDC}/\mathsf{AC}$
- $\begin{array}{l} \longleftrightarrow \ \mathsf{FC}/\mathsf{AC} \\ \longleftrightarrow \ \mathsf{FC}/\mathsf{AC} \end{array}$

Please keep in mind:

- you are using a prototype system, some components of which have been re-activated or newly developed only during the last months
- currently we do not (yet/any more) have user-friendly "Itools", but only quick and dirty scripts for low-level operations:
 - try-mdc, try-fc, try-acs (just wrapper scripts for curl)
 - lime-ls, lime-cat1, lime-pack1
 - ildg-cksum, ildg-binary
 - ... you all can improve them and contribute to develop proper user tools!

Hands-on Exercises (cont.)

- Required SW packages are installed in the workshop image (docker + apptainer) which you should have running according to the instructions . In particular, the container includes
 - voms-proxy-init
 - gfal commands (Grid File Access Library)
 - curl (version working with proxy certificates) and other utilities
- Additional material is on gitlab
 - exercise instructions
 - scripts for low-level testing (try-*)
- Ready to get hands on? (and fingers dirty!)
- Please also prepare 1 slide/group for the wrap-up discussion on Friday
 - Which technical aspects did not work or are difficult / inconvenient?
 - Which technical aspects worked well or are convenient?
 - Which aspects of the markup are problematic for your project?
 - Which elements of the metadata schema are missing / incompatible for your projects?