
Expanding HDF5 Capabilities

Elena Pourmal elena.pourmal@lifeboat.llc
John Mainzer john.mainzer@lifeboat.llc

mailto:elena.pourmal@lifeboat.llc
mailto:john.mainzer@lifeboat.llc

Outline
§ Introduction to Lifeboat, LLC
§ Multi-threaded access to data in HDF5
§ Support for sparse and variable-length data in HDF5

September 19 - 21, 2023 EHUG23

Lifeboat, LLC

§ Goal: Sustain and enhance open source HDF5
⁃ Founded in August 2021
⁃ Located in Champaign, IL and Laramie, WY
⁃ www.lifeboat.llc
⁃ info@lifeboat.llc

§ Funded by DOE SBIR/STTR Program
⁃ Phase I and Phase II: “Toward multi-threaded concurrency in HDF5”
⁃ Phase I: “Supporting sparse data in HDF5”

September 19 - 21, 2023 EHUG23

We don’t make HDF5… we make HDF5 better

http://www.lifeboat.llc/
mailto:info@lifeboat.llc

Multi-threaded access to data in HDF5
S

Feasibility of Multi-Threaded HDF5 library

September 19 - 21, 2023 EHUG23

Calling graph of a CGNS library test shows interdependencies between HDF5 packages.

Is multi-threading even possible?

HDF5 Architecture

HDF5 C API

VOL Layer

VFD Layer

HDF5 Library
 proper (Native VOL)

PO
SI

X

M
PI

 I/
O

File System Storage

HDF5 Application

…

POSIX API

R
O

S3

S3 Cloud

Terminal
VOL

Connector

Pass-through VOL connector

G
PU

Connector specific API

Filter plugins (e.g., compression)

Filters

S3 API

Plugins
Filter, VFD, VOL

ne
w

Library
component

Library
component

Legend

Global lock

EHUG23

……

Bypass VOL Connector

VFD Layer

HDF5 Library
 proper (Native VOL)

File System

HDF5 Application

ne
w

MT Bypass VOL connector

HDF5 C API

VOL Layer

Bypass VOL Concept

Initially will support I/O for contiguous and
chunked datasets; no data filtering

• Checks if I/O is supported; routs to native
VOL or to connector proper (hits mutex)

• Queries HDF5 library for the location of
raw data (hits mutex)

• Executes raw data I/O in parallel in
multiple threads

• Functionality will be extended as parts of
the HDF5 library (e.g., metadata cache)
are converted

• See documentation
https://github.com/LifeboatLLC/MT-HDF5

• Check HUG23 “Toward Multi-Threaded
Concurrency in HDF5” talk by John
Mainzer

H5I, H5E, H5P, H5CX, H5VL,
H5S, H5FD

Multi-threaded HDF5 modules
required by VOL connectors

Work in progress Low priority for the
first release

September 19 - 21, 2023 EHUG23

https://github.com/LifeboatLLC/MT-HDF5

Bypass VOL Connector (cont’d)
§ Prototyped VOL connector functionality was implemented by

Luc Grosheintz, EPFL, Blue Brain Project in collaboration with
John Mainzer and Elena Pourmal

§ Next slides show achieved performance improvements

September 19 - 21, 2023 EHUG23

9Digitally Reconstructed Neurons – Blue Brain Project

Hardware:
l Intel Xeon Gold 6140

l 2x 18 cores
l 6 memory channels

l 100 Gb/s InfiniBand
l SpectreScale/GPFS:

l 2x GS14KX
l 8x EDR
l HDD

{
"0000": {

"points”: np.empty((9610, 3), np.float32),
“offsets": np.empty(21, np.uint64)

},
"0001": {

"points": np.empty((14983, 3), np.float32),
"offsets": np.empty(48, np.uint64)

},
...

}

Synthetic Data Presented:
Datasets: 20'000
Total size: 17 GB
File Space Strategy: Paged allocation
Page size: 64 kB

1k - 100M
neurons

Slide courtesy of Luc Grosheintz, Blue Brain Project, EPFL
Blue
Brain
Project

10

Direct OpenMP HDF5 Prototype

1.Sequentially, read shape/size and
offset from beginning of the file for
each dataset.

2.Concurrently, `std::fseek` &
`std::fread` individual datasets.

Slide courtesy of Luc Grosheintz, Blue Brain Project, EPFL
Blue
Brain
Project

11

Page-aware OpenMP HDF5 Prototype

1.Sequentially, read shape/size and
offset from beginning of the file for
each dataset.

2.Pre-allocate datasets.
3.Sort by page.
4.Concurrently loop over pages.

Slide courtesy of Luc Grosheintz, Blue Brain Project, EPFL
Blue
Brain
Project

12
Results HDF5 VOL Connector Prototype

Experimental Setup:
l 12 Threads
l 3 measurements

HDF5: Plain HDF5 with 512 MB
page buffer, 75% reserved for raw
data.

Direct / Page-Aware: The two
variants of the prototype.

l Left: Read metadata using
HDF5

l Right: Read metadata from
JSON

Best result achieves the effective
single node bandwidth of GPFS
over InfiniBand.

Slide courtesy of Luc Grosheintz, Blue Brain Project, EPFL
Blue
Brain
Project

Support for sparse and variable-length data in HDF5

What is Sparse Data?
§ Sparse data is ubiquitous; examples come from the experimental sciences

and computer modeling:
⁃ High Energy Physics (HEP); Neutron and X-Ray scattering; Mass Spectrometry

experiments; Transmission electron microscopy; Genomics; AMR
§ There is no ”standard” definition of “sparse data”.
⁃ Linear algebra – data is considered sparse if less than 30% of matrix elements

are non-zeros.
⁃ Experimental sciences - only 0.1% to 10% of gathered data is of interest, but it

may contain a bigger percentage.

September 19 - 21, 2023 EHUG23

15Use Cases

September 19 - 21, 2023 EHUG23

Linear algebra

AMR

Sparse Reconstruction in MRI

Computer modeling
See notes for references

SLAC use case: LCLS-II images

Motivation for Sparse Storage: LCLS-II Use Case
§ Experiments produce a stream of two-dimensional images.
§ For each image it is possible to automatically identify either:
⁃ A rectangular Region of Interest (ROI) in each image which will typically

comprise about 10% of the image, or
⁃ 50 – 100 small subsections in each image (typically 5 to 10 contiguous points or

pixels).
⁃ The number, size, configurations, and locations of ROI or the small subsections

change over time.
§ For each image in the stream it is desired to store
⁃ Only the ROI or the point list in a three-dimensional HDF5 dataset
‣ One must be able to recover both the location and contents of the ROI and/or the elements of

the point list.
⁃ Every Nth two-dimensional image in full, where N is constant over any given

experiment. Note that the ROI or point list of each “full” two-dimensional image must
be recoverable as well.

September 19 - 21, 2023 EHUG23

LCLS-II Use Case (cont’d)
§ To meet this requirement, we propose to implement sparse datasets:
⁃ Only the entries that have been written explicitly are defined.
⁃ The defined entries can be readily identified, and read. To the above minimal

requirement, we also add:
⁃ Compatibility with dense datasets – thus code designed for the existing

dense datasets will still work, reading defined values if available, and the fill
value (default 0) where not.

⁃ Ability to use filtering (compression).
⁃ Ability to erase defined values – that is to remove them from the set of

defined values.
⁃ Data is portable, i.e., doesn’t depend on data storage in memory

§ See Reference slide for pointers to RFCs

September 19 - 21, 2023 EHUG23

18

New Storage Paradigm: Idea of Structured Chunk

September 19 - 21, 2023 EHUG23

Chunked dataset Chunked storage: all chunk elements are stored

0 0 0 0 0 0 0 0 0 0 0 0 66 69 72 0 0 96 99 96 102

0 may represent a value that is not-defined

Structured Chunk storage:
Locations and values of defined elements
specified by the hyperslab selection
are stored in different sections of the chunk

Section 0
Section 1

Encoded selection
66 69 72 96 99 96 102 If we write a shown sub-array using

hyperslab selection how the chunk will
be stored in the file?

19
Structured Chunk for Fixed and Variable-size Data

September 19 - 21, 2023 EHUG23

Fixed-size
datatype

VL-size
datatype

Programming Model

September 19 - 21, 2023 EHUG23

/*
 * Create the dataset creation property list, add the gzip filter to compress all
 * sections of the sparse chunk using DEFLATE filter.
 */
 dcpl = H5Pcreate (H5P_DATASET_CREATE);
 status = H5Pset_layout (dcpl, H5D_SPARSE_CHUNK);
 status = H5Pset_chunk (dcpl, 2, chunk_dims);
 status = H5Pset_deflate (dcpl, 9);

 /* Create the dataset */
 dset = H5Dcreate (file, DATASET, H5T_STD_I32LE, space, H5P_DEFAULT, dcpl, H5P_DEFAULT);

 /* Create hyperslab selection in memory and in the file */
 …..

 /* Write the data to the dataset */
 status = H5Dwrite (dset, H5T_NATIVE_INT, mspace_id, fspace_id, H5P_DEFAULT, buf[0]);

Proposed New APIs

September 19 - 21, 2023 EHUG23

Function Name Short Description

H5Dget_defined Retrieves a dataspace object with the defined elements

H5Derase Deletes elements from a dataset
H5Dwrite_struct_chunk Writes structured chunk
H5Dread_struct_chunk Reads structured chunk
H5Dget_struct_chunk_info Gets structured chunk info
H5Dget_struct_chunk_info_by_coord Retrieves the structured chunk information

H5Dstruct_chunk_iter Iterates over all structured chunks in the dataset

H5Pset_filter2 Adds a filter to a filter pipeline for a specified section of
sparse structured chunk

H5Pget_nfilter2 Returns the number of filters in the pipeline for a section
of structured chunk

More filter functions ….

H5Pset_filter2

§ We want to address deficiency of the current API for passing filter’s data

September 19 - 21, 2023 EHUG23

herr_t H5Pset_filter2 (hid_t plist_id,
 uint64_t section_number,
 H5Z_filter_t filter,
 uint64_t flags,
 size_t buf_size,
 const void *buf)

new parameter

new datatype

Programming model (cont’d)

September 19 - 21, 2023 EHUG23

 /* Apply compression methods to different sections of
 * a structured chunk. In this example, sparse chunk has two sections.
 * We are using gzip compression on the encoded selection section
 * and szip on the fixed-size data section.
 */
 flags = H5Z_FLAG_OPTIONAL;
 status = H5Pset_filter2 (dcpl, H5Z_FLAG_SPARSE_SELECTION,
 H5Z_FILTER_DEFALTE, flags, nelem, &data);

 status = H5Pset_filter2 (dcpl, H5Z_FLAG_SPARSE_FIXED_DATA,
 H5Z_FILTER_SZIP, flags, …);

Acknowledgement
This work is supported by the U.S. Department of Energy, Office of Science
under Award number DE-SC0023583 and "Toward multi-threaded
concurrency in HDF5”.

This work is supported by the U.S. Department of Energy, Office of Science
under Award number DE-SC0023583 for SBIR project “Supporting Sparse
Data in HDF5”.

We thank The HDF Group developers and Quincey Koziol, Principal
Engineer, AWS HPC for reviewing our technical proposal and for providing a
constructive feedback.

September 19 - 21, 2023 EHUG23

References
1. https://github.com/LifeboatLLC/MT-HDF5/tree/main/design_docs

2. https://github.com/LifeboatLLC/MT-HDF5/tree/main/LFHT

3. https://github.com/HDFGroup/hdf5/discussions/3257

4. John Mainzer, Elena Pourmal, “RFC: File Format Changes for Enabling Sparse Storage in HDF5”.
Available from https://github.com/LifeboatLLC/SparseHDF5/

5. John Mainzer, Elena Pourmal, “RFC: Programming Model to Support Sparse Data in HDF5” Available
from https://github.com/LifeboatLLC/SparseHDF5/

6. J. Mainzer et al., "Sparse Data Management in HDF5," 2019 IEEE/ACM 1st Annual Workshop on
Large-scale Experiment-in-the-Loop Computing (XLOOP), Denver, CO, USA, 2019, pp. 20-25, doi:
10.1109/XLOOP49562.2019.00009

7. The HDF Group, “Draft RFC: Sparse Chunks”
https://docs.hdfgroup.org/hdf5/rfc/RFC_Sparse_Chunks180830.pdf

8. The HDF Group, Variable-Length Data in HDF5 Sketch Design,
https://docs.hdfgroup.org/hdf5/rfc/var_len_data_sketch_design_190715.pdf

September 19 - 21, 2023 EHUG23

https://github.com/LifeboatLLC/MT-HDF5/tree/main/design_docs
https://github.com/LifeboatLLC/MT-HDF5/tree/main/LFHT
https://github.com/HDFGroup/hdf5/discussions/3257
https://github.com/LifeboatLLC/SparseHDF5/
https://github.com/LifeboatLLC/SparseHDF5/
https://docs.hdfgroup.org/hdf5/rfc/RFC_Sparse_Chunks180830.pdf
https://docs.hdfgroup.org/hdf5/rfc/var_len_data_sketch_design_190715.pdf

Thank you!

Questions?

September 19 - 21, 2023 EHUG23

