
Recent improvements in the
HDF5/Blosc2 plugin systems

Francesc Alted / @FrancescAlted

The Blosc Development Team / @Blosc2

CEO / @ironArray

2023 European HDF User Group (HUG) plugins and data
compression summit
September 19th 2023

2 /

What is Blosc2?

ü Next generation of
Blosc(1), a high
performance
compressor.

ü Blosc2 adds 63-bit
containers that expand
over the existing 31-bit
containers (chunks) in
Blosc1.

ü Supported in hdf5plugin
(still experimental)

App1

App2

Header:
Fixed Length
Metalayers

Data:
Super-Chunk

Trailer:
Var Length
Metalayers
(up to 2 GB)

Chunk 1

Block 1

Block 2

...

Block N

Chunk N

... Block 1

Block 2

...

Block N
vlmeta1

vlmeta2

vlmeta3

The Blosc Development Team
Marta Iborra
Aleix Alcacer
Francesc Alted
J. David Ibáñez
Ivan Vilata
Oscar Guiñón
Sergio Barrachina
Alberto Sabater

Agenda

A new dynamic plugin system for
Blosc2

A new plugin for HT JPEG2000

Support for Blosc2 Ndim in HDF5

Btune: AI tool for automatic selection
of the best codecs and filters

A new dynamic plugin
system for Blosc2

Whenever C-Blosc2 receives a request for using dynamic codec ID N, it will
dynamically load its DLL library using dlopen()/LoadLibrary() calls:

Loading plugins dynamically
How does it work?

C-Blosc2 DLL of codec ID plugin

codec ID N
compress() /
decompress()

dlopen()

data

https://www.blosc.org/posts/dynamic-plugins/

https://www.blosc.org/posts/dynamic-plugins/

Dynamic plugins as Python wheels

• Wheels are not only a great idea, but they are well implemented too:
• Great backward compatibility with really old OS
• Smooth user interface (via pip) for dealing with different platforms
• Mostly compatible with conda environments

• We are actively using wheels for distributing binary versions of the C plugins (e.g.
OpenHTJ2K; see later).

• Anybody can create their own plugins, and distribute them in binary form.

Pros and cons of dynamic plugins

Pros
• Very easy to install:

$ pip install blosc2-openhtj2k

• Do not bloat the C-Blosc2 library or other plugin managers (hdf5plugin,
numcodecs…)

• Support for C, C++, Rust plugins. Only requisite is to expose a C API!

Cons
• Somewhat more work to create. But we are providing an example with

detailed instructions:

https://github.com/Blosc/blosc2_plugin_example#readme

https://github.com/Blosc/blosc2_plugin_example

A new plugin for High
Throughput JPEG 2000

High Throughput JPEG 2000 (HTJ2K)

HTJ2K preserves almost all the rich feature set of JPEG 2000, except for quality
scalability, offering an order of magnitude increase in throughput (i.e., vastly lower
computational complexity) at the cost of a 5-10% reduction in coding efficiency.

https://ds.jpeg.org/whitepapers/jpeg-htj2k-whitepaper.pdf

https://ds.jpeg.org/whitepapers/jpeg-htj2k-whitepaper.pdf

Introducing the Blosc2-OpenHTJ2K
dynamic plugin

• It is using OpenHTJ2K, an open source HTJ2K implementation by
Osamu Watanabe.

• Release 0.1.2 is out! Please review.
• Packed and distributed as a Python wheel:

• $ pip install blosc2-openhtj2k

https://github.com/Blosc/blosc2_openhtj2k

https://github.com/osamu620/OpenHTJ2K
https://github.com/Blosc/blosc2_openhtj2k

Lossless vs lossy compression
with OpenHTJ2K

OpenHTJ2K lossless (634K) OpenHTJ2K lossy (330K)

Effect of blocksize on size and quality

Better compression when blocksize
equals to image size

Better quality when blocksize
equals to image size

OpenHTJ2K works better when blocks are of the same size than images

Parameters for OpenHTJ2K
params_defaults = {

'blkheight' : 4,

'is_max_precincts' : True,

'use_SOP' : False,

'use_EPH' : False,

'progression_order' : 0,

'number_of_layers' : 1,

'use_color_trafo' : 1,

'dwt_levels' : 5,

'codeblock_style' : 0x040,

'transformation' : 1,

<snip>

}

And then some more: https://github.com/osamu620/OpenHTJ2K#options

https://github.com/osamu620/OpenHTJ2K

Work in progress

• It cannot leverage Blosc2 multithreading yet (OpenHTJ2K not
threading-safe)

• One can still use the internal one provided by OpenHTJ2K (still WIP)

• Support for just x86_64. ARM64 should be interesting, specially for Macs.

• Make the Blosc2 plugin for HDF5, as well as hdf5plugin, aware of the
parameters needed for OpenHTJ2K. As there are many of them, we
better be creative on how to pass them:
• Good enough defaults?
• Passing params via environment variables?

Support for Blosc2 NDim in
PyTables / HDF5

C-Blosc2 NDim: Multidimensions for C

ü Each NDim array is split in
chunks

ü Each chunk is split in blocks
ü Both partitions are

multidimensional
ü Metalayer representing

both multidimensionality
and data types

https://www.blosc.org/c-blosc2/reference/b2nd.html

https://www.blosc.org/c-blosc2/reference/b2nd.html

Leveraging the second partition
in Blosc2 NDim

Much more selective and
hence, faster queries!

Blosc2 NDim HDF5 / Zarr / others

Bypassing the HDF5 pipeline:
Direct Chunking

• HDF5 pipeline
implementation is powerful
but known to be slow

• PyTables has support for
bypassing it via the
H5Dwrite_chunk /
H5Dread_chunk

• Unleash the full I/O parallel
in Blosc2

HDF5 pipeline vs direct chunking:
Reading orthogonal slices

Faster slicing due to higher data selectivity in double partitioning

constant dim0

constant dim1 constant dim2

2.8 G

Btune: automatic selection
of the best codecs / filters

Fine Tuning Performance with BTune

• BTune can fine tune the different
parameters of the underlying
Blosc2 storage to perform as best
as possible.

• Can be trained to find the best
codec & filter with deep learning.

• Btune ready for production!

https://btune.blosc.org

https://btune.blosc.org/

Different tiers of support for Btune

• Genetic (Btune Free): test different combinations by brute force

• Trained (Btune Models): Blosc team train datasets for you:

• More accurate predictions for all chunks (specially first ones!)

• Fully managed (Btune Studio): you can train on your own

https://btune.blosc.orgTutorial on Thursday!

https://btune.blosc.org/

Conclusion

Blosc2 is making rapid progress

The Blosc2 development team has recently implemented:

• Dynamic plugin support
• Plugin for High Throughput JPEG 2000
• Implemented native support for Blosc2 NDim in

HDF5, bypassing the HDF5 pipeline
• Btune, an AI tool for automatically selecting the

best Blosc2 parameters, is in production mode

Blosc2: a highly efficient and flexible tool for
compressing your data, your way

Thanks to donors
& contracts!

Without them, we could not have possibly put Blosc2 into production
status: Blosc2 2.0.0 came out in June 2021; now at 2.10.3.

Jeff
Hammerbacher

Thank you! Questions?

We make compression better
blosc@blosc.org

