
Processing HDF5 data with FPGAs

1) MAX IV Laboratory, Lund, Sweden
2) Niels Bohr Institute, København, Denmark

Zdenek Matej 1, Kenneth Skovhede 1,2, Carl Johnsen 2, Artur Barczyk 1,
Clemens Weninger 1, Andrii Salnikov 1 and Brian Vinter 2

How one can get to HDF5 data processing with FPGAs?

Zdenek - scientific sw, material
science & diffraction methods

MAX IV synchrotron
laboratory … few years ago

Artur – physics, CERN,
MAX IV networks and
infrastructure

We are writing a grant application for dealing with
synchrotron and XFEL data and we will use GPUs.

Hmm, GPUs. Are you using also FPGAs
for these applications ?

No, bla, bla, bla … (many excuses).

(Thought): How one can do it?

Kenneth – expert in FPGA
languages, “inventor” of SME*

Carl … another FPGA genius from NBI
Brian … professor at NBI

github.com/bh107/SME-Binning
“bincounting”

HDF5 Hug 2023 Processing HDF5 data with FPGAs

http://github.com/bh107/SME-Binning

HDF5 Hug 2023 Processing HDF5 data with FPGAs

Processing photon science data with FPGAs
HDF5 and heterogenous hw accelerated compute

● frame corrections
– conversions
– mask
– flat field

● simple processing
– image binning
– roi-counting

● spot finding

● GPU like applications
– azimuthal integration
– phase retrieval
– full field tomography

reconstructions

● (de)compression

● ML inference
– image classification

● frame & event filtering

FPGAs pros
• real time
• parallel, high performance and throughput
• integrated networking - couple with detectors
• power effective
• common hw with many other applications (like GPUs)

cons
• difficult to program
• difficult to install
• not so rich scientific sw ecosystem (?)

2010–2015: 800 FPGA application reported by J. Romoth et al. (2017),
doi: 10.13140/RG.2.2.16364.56960 + increasing variety

• all x-ray scattering and
imaging data acquired by
MAX IV DAQ are stored in
the HDF5 format

• bslz4 is the default
compression for 2D
detector image data
(frames)

Credit: The HDF Group - maintainers
of HDF file format

HDF5 Hug 2023 Processing HDF5 data with FPGAs

Existing FPGA applications
in Photon and Neutron (PaN) sciences

●Maxime Martelli et al. (CNRS, Paris)
3D Tomography Back-Projection Parallelization on Intel
FPGAs Using OpenCL
– doi: 10.1007/s11265-018-1403-6

● Filip Leonarski et al. (SLS/PSI)
Fast and accurate data collection for macromolecular
crystallography using the JUNGFRAU detector
– doi: 10.1038/s41592-018-0143-7

● César González et al. (Barcelona)
High Performance Computing PP-Distance Algorithms
to Generate X-ray Spectra from 3D Models
– doi: 10.3390/ijms231911408

Spot-finding

Tomography reconstructions

0 5 10 15 20 25 30 35 40
-3

-2

-1

0

1

2

3

4

5

G
 (A

-2
)

r (A)

 G observed
 G calculated
 difference

PDF and small angle scattering

https://doi.org/10.1007/s11265-018-1403-6
https://doi.org/10.1038/s41592-018-0143-7
https://doi.org/10.3390%2Fijms231911408

HDF5 Hug 2023 Processing HDF5 data with FPGAs

Field Programmable Gate Arrays
FPGAs

● arrays of logic gates
– O(10) million gates today in largest FPGAs

● ‘programmed’ by creating connections between logic blocks

● arranged in functional blocks
– DSP, logic, memory, I/O

● O(10) Tflops, comparable to GPUs
● (ordinary) programmed in specialized languages, adapted to

electronics development (Verilog, VHDL)
– intellectual property cores (~sw module) can be purchased

● ideal for bit-level data manipulation

● FPGA boards: integrated network interfaces

FPGA chip memory

CPU connection (PCIe)

network
interfaces

De
te

ct
or

Credit: Bittware

Credit: Kovačec, doi: 10.1007/978-3-319-14346-0_40

http://doi.org/10.1007/978-3-319-14346-0_40

HDF5 Hug 2023 Processing HDF5 data with FPGAs

FPGA vs GPU parallelism
FPGA is a network of (~100k) smart units

1 2 3 4

time

Input pixel buffer:

space

1 - - -t1

2 1*1 - -t2

3 2*2 1*1+1 -t3

4 3*3 2*2+1 2t4

1 2 3 4t1: Load

1*1 2*2 3*3 4*4t2: a*a

1*1+1 2*2+1 3*3+1 4*4+1t3: a*a+1

a*a + 1
Load a*a a*a+1 Store

FPGA

proc1 proc2 proc3 proc4instruct

GPU

2 5 10 17t4: Store

4 pix /4 clocks = 1 pix/clock
latency

- 4*4 3*3+1 5t5
1 pix/clock
throughput

FPGAs as a flexible factory
very parallel hardware ~ 100k of logical units

HDF5 Hug 2023 Processing HDF5 data with FPGAs

Credit: Kovačec, doi: 10.1007/978-3-319-14346-0_40

Fr
am

ew
or
k

20
%

Global MEM interconnect (PCIe/HBM) 10%

Note: frequencies are lower
than on CPUs.FPGAs have
~100 MHz – 1.5 GHz

Local MEM interconnect (cache) 10%

bs
zl

4
de

co
m

pr
es

si
on

 5%
other parallel
applications

~35%
AZ

 IN
T

20
%

Water mill powered saw in
Wallachian museum (CZ)
Credit: Jan Polák

http://doi.org/10.1007/978-3-319-14346-0_40

Access to FPGAs
One size does not fit all

● cost and power effecSve FPGAs … for professional applicaSons and hobbyists … or low power (outer space applicaSons)
– 100k gates, O(0.5) GB mem, 1 Gbs Ethernet, O(100) MHz, O(2) W
– O(200) USD (development kit or module/minicomputer)
– shop: distributors of electronic components
– popular development kits: PYNQ for Zynq SoC or DE10-Nano Kit
– sign for academic programmes

● medium size FPGAs
– 1M gates, O(16) GB mem, 40-160 Gbs, O(300) MHz, O(50) W
– O(4-6) 1000 USD

● large and extra large FPGAs
– O(10)M gates, O(32) GB mem, 400 Gbs – 1.2 Tbs, O(500) MHz, O(150) W
– > O(6-14) 1000 USD

● DevCloud: github.com/intel/FPGA-Devcloud ⭐

HDF5 Hug 2023 Processing HDF5 data with FPGAs

https://github.com/intel/FPGA-Devcloud

Data processing with FPGAs
Definitions

HDF5 Hug 2023 Processing HDF5 data with FPGAs

Fast
• low latency or high throughput ?
• processing independent data elements:

frames, pixels, bytes, bits:
• 4 Mpix detector, 2 kHz frame rate
• => 4Mpix * 2kHz = 8 Gpix/s
• (16 bits int) 2 Bytes/pix => 16 GB/s

• fast … high throughput
• … many frames per sec (Hz>>1)
• … many pixels/s (Gpix/s>>1)
• … many bytes/s (GB>>1)

Real Jme
• predicable, fixed and low latency
• FPGA clocks O(200) MHz -> 5 ns
• FPGA clock can be synchronized with external

timing system (accelerator/machine) with sub-
pico-second precision

• processing a diffraction image may be many
clocks … 32 pix/clock, 4 Mpix image =>
4 Mpix / 32pix * 5 ns = 0.625 ms

Curiosity:
• CPU servers … O(5) Tflops
• GPUs … O(10) Tflops
• Detectors: O(2) Gpix/s … factor of >2000 ?

HDF5 Hug 2023 Processing HDF5 data with FPGAs

● highl level tools for FPGAs
– Synchronous Message Exchange (SME): github.com/kenkendk/sme

• Kenneth Skovhede & Carl Johansen (Niels Bohr Institute)
• C#/C++/Python -> SMEIL (SME intermediate language) -> VHDL -> bitstream
• vendor agnostic

– OpenCL or SYCL/OneAPI
• “C/C++ with pragmas”, OpenCL is an older standard used also for GPUs
• FPGAs in DevCloud or in production at MAX IV

– High Level Synthesis (HLS)
• “C/C++ with pragmas”

● orchestration on host (CPU)
– Python or C++

● HDF5
– libhdf5 or h5py

language: OpenCL/C
code is hw agnostic

alg. core: 36 lines
host: PyOpenCL

Programming FPGAs for scientific data processing
tools

https://github.com/kenkendk/sme

Frameworks
Hardware and language is not all that ma8ers

● Using a “productivity” framework may accelerate the FPGA project,
. . . especially if one is starting with programming hardware.

● Popular frameworks:
– PYNQ: HLS + Python and Jupyter (notebooks)
– OpenCL
– OneAPI (C++) + SYCL
– OpenCAPI + HLS

● Advantages:
– No need of “writing Linux/Windows drivers”
– No need of extensive knowledge of FPGA-tools ecosystem for electrical engineers
– Simplified FPGA (re)programming
– Diagnostic utilities
– API for C++ or Python

HDF5 Hug 2023 Processing HDF5 data with FPGAs

www.pynq.io

http://www.pynq.io/

HDF5 data with FPGAs
key components

HDF5 Hug 2023 Processing HDF5 data with FPGAs

Credit: Unknown Authors,
licneced under CC BY-SA

CPU

h5py.h5d.
read_direct_chunk

pyopencl.
enqueue_copy

pyopencl.
enqueue_nd_range_kernel

bitshuffle.
decompress_lz4

HDF5 direct chunk read
is the “key” ingredient that allows

this work.

decompression on CPU is
optional … should be
removed in future … 2nd
part of the talk

https://creativecommons.org/licenses/by-sa/3.0/

HDF5 Hug 2023 Processing HDF5 data with FPGAs

Azimuthal integration
Data processing example: 2D image -> 1D pattern

● for each image pixel (n,m->ipix … linearized index):
1. trigonometric calc. -> scattering angle (2Qn,m)
2. binning (2Qn,m) -> single index (iout-bin)
3. intensity corrections
4. histogram, bincount or sparse matrix multiplication

detector image

2Qmin 2Qmax

detector image

index (iout-bin)corrected pixel counts
added to a bin

or splitted between
several bins

2Qn,m

pixel

pixel splitting
𝐼(2Θ)!"#$ = '

#%#&'(

)!"#

𝐴!"#$,#%#& 𝐼𝑚𝑔#%#&
∈ ℝ ∈ ℝ ∈ ℤ

sparse matrix A . . .
• real numbers
• geometry, calibration, physics of pixel

and intensity corrections
• size: ~ 10k x 1M

sI . . . experimental error propagation

• split physics and
computation

• use
• bincount
• sparse matrix

multiplication

fast with FPGA

keeping flexible on CPU

HDF5 Hug 2023 Processing HDF5 data with FPGAs

Basic algorithm on FPGAs
bincount - first implementa@on

● bincount: simple algorithm similar to computing histogram
– result kept in “local” memory (FPGA Block or Ultra RAM)
– If position_old == position_new:

• True: accumulate (sum values)
• False: store old acc, load new acc, accumulate

– 1 pixel per clock (per processing unit)
● by Carl Johansen (NBI) using Synchronous Message Exchange (SME) – in 1 day
● initially only for integers
● performance numbers:

– small FPGA at 100 MHz: 1 Gpix/s (10% util. per processing unit)
– large FPGA at 590 MHz: 20 Gpix/s (3% util. per unit)

● ref: github.com/bh107/SME-Binning
● OpenCL/OneAPI/HLS:

– one of many FPGA programming “tricks” often called “Shannonization” (Claude Shannon)

http://github.com/bh107/SME-Binning

● initially only for integers -> real-numbers corrections -> floats(32)

● need for pixel “reordering” (bisort + resort)

● again 1 pix/clock/pipeline

● Performance prediction:
– 1 pipeline … 1.25% of FPGA resources
– 1 decompression pipeline … 1%
– 20% for the framework + 32 pipelines * (1.25+1)% = 92% FPGA utilization
– 1 pix/s * 32 pipelines * 360 MHz = 11.5 Gpix/s

HDF5 Hug 2023 Processing HDF5 data with FPGAs

Basic algorithm on FPGAs
bincount + bisort & resort for floating point data

Credit: by Octotron - own work,
CC BY-SA 3.0

Bitonic sorter

can be expressed as
systolic array

-> very suitable for FPGA

https://commons.wikimedia.org/w/index.php?curid=6451008
https://commons.wikimedia.org/w/index.php?curid=6451008

HDF5 Hug 2023 Processing HDF5 data with FPGAs

Performance figures
AZINT bincount – FPGAs with OpenCL, no decompression

*comparable to NVIDIA V100 (~ 6 Gpix/s, 12 nm process)

Medium Large comment

size medium large

FPGA Aria 10 GX Stratix 10 MX

process 20 nm 14 nm

memory 2 x DDR3 2 x HBM2

QSPF 2x10/40 Gbs 4 x 100 Gbs

framework OpenCL OpenCL

processing pipelines 32 32 pix/s

ALUTs utilization 45% 40%

RAMs utilization 60% 25% fp32, 8k bins

frequency / ideal (MHz) 205 / 240 360 / 480

host-to-device bandwidth 4.7 GB/s 5.6 GB/s x8 PCIe Gen3, can handle 4.5M x 500 Hz ✅

processing (virtual) pixel rate 5.7 Gpix/s* 8.9 Gpix/s allows pixel-splitting = 3 ✅

Credit: Bittware

HDF5 Hug 2023 Processing HDF5 data with FPGAs

FPGA result in 7.6 sec

AZINT & bincount
gitlab.com/MAXIV-SCISW/compute-fpgas/bincount

Open-source license

https://gitlab.com/MAXIV-SCISW/compute-fpgas/bincount

Decompression on FPGAs with OpenCL
bitshuffle & lz4

HDF5 Hug 2023 Processing HDF5 data with FPGAs

Credit: oneAPI-sample at GitHub.com

• key component: LZ77
decoder
• history buffer
• multi-byte in / out

• oneAPI -> OpenCL
retrofitting done
in few hours :-)

• Snappy reader being
replaced by lz4 reader

• bitshuffle stage needs
to be added

lz4 reader
lz4 sequence

● multi-byte in / out
● out: LZ77 instructions

– multiple literals
– single match-copy operation

HDF5 Hug 2023 Processing HDF5 data with FPGAs

each byte adds max 255
to literals length

unlimited length

Credit: by Cyan,
http://fastcompression.blogspot.com/
2011/05/lz4-explained.html

Token OffsetLiteralsLiterals length+ (optional) Match length+ (optional)

1 byte 0-N bytes 0-L bytes 2 bytes 0-M bytes
little endian

Token: literals length (4 high bits), match length (4 low bits)

http://fastcompression.blogspot.com/2011/05/lz4-explained.html
http://fastcompression.blogspot.com/2011/05/lz4-explained.html

lz4 – statistics
bitshuffle & lz4 in pure Python and numpy

HDF5 Hug 2023 Processing HDF5 data with FPGAs

Note: each byte adds only max 255 to length

©Dectris Eiger, 32 bit, 16 Mpix, MX experiment

lz4 – statistics
bitshuffle & lz4 in pure Python and numpy

HDF5 Hug 2023 Processing HDF5 data with FPGAs

85.0 percentile is 5.0
85.4% entries have max len 5 bytes
82.2% entries have max len 4 bytes
33.8% entries have max len 3 bytes

• e.g. 3 bytes are pure match-copy ops
• optimizations
• speculate 3-5 bytes sequences

HDF5 Hug 2023 Processing HDF5 data with FPGAs

Summary
● we can do data processing like AZINT on FPGAs with

the standard scientific precision
● we use direct chunk read to get uncompressed data
● having decompression on FPGAs is close
● AZINT & bincount & bslz4:

gitlab.com/MAXIV-SCISW/compute-fpgas

MAX IV Laboratory, Lund
Artur Barczyk
Andrii Salnikov

Clemens Weninger
Thank you for your

attention

Niels Bohr Institute, Copenhagen
Kenneth Skovhede
Carl Johnsen
Brian Vinter
Mads Jörgensen

https://gitlab.com/MAXIV-SCISW/compute-fpgas/bincount

