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How one can get to HDF5 data processing with FPGAs?

Zdenek - scientific sw, material 
science & diffraction methods

MAX IV synchrotron 
laboratory … few years ago

Artur – physics, CERN, 
MAX IV networks and 
infrastructure

We are writing a grant application for dealing with 
synchrotron and  XFEL data and we will use GPUs.

Hmm, GPUs. Are you using also FPGAs 
for these applications ?

No, bla, bla, bla … (many excuses).

(Thought): How one can do it?

Kenneth – expert in FPGA 
languages, “inventor” of SME*

Carl … another FPGA genius from NBI
Brian … professor at NBI

github.com/bh107/SME-Binning
“bincounting”
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http://github.com/bh107/SME-Binning
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Processing photon science data with FPGAs
HDF5 and heterogenous hw accelerated compute

● frame corrections
– conversions
– mask
– flat field

● simple processing
– image binning
– roi-counting

● spot finding

● GPU like applications
– azimuthal integration
– phase retrieval
– full field tomography

reconstructions

● (de)compression

● ML inference
– image classification

● frame & event filtering

FPGAs pros
• real time
• parallel, high performance and throughput
• integrated networking - couple with detectors
• power effective
• common hw with many other applications (like GPUs)

cons
• difficult to program
• difficult to install
• not so rich scientific sw ecosystem (?)

2010–2015: 800 FPGA application reported by J. Romoth et al. (2017), 
doi: 10.13140/RG.2.2.16364.56960 + increasing variety

• all x-ray scattering and 
imaging data acquired by 
MAX IV DAQ are stored in 
the HDF5 format

• bslz4 is the default 
compression for 2D 
detector image data 
(frames)

Credit: The HDF Group - maintainers 
of HDF file format 
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Existing FPGA applications
in Photon and Neutron (PaN) sciences

●Maxime Martelli et al. (CNRS, Paris)
3D Tomography Back-Projection Parallelization on Intel 
FPGAs Using OpenCL
– doi: 10.1007/s11265-018-1403-6 

● Filip Leonarski et al. (SLS/PSI)
Fast and accurate data collection for macromolecular 
crystallography using the JUNGFRAU detector
– doi: 10.1038/s41592-018-0143-7

● César González et al. (Barcelona)
High Performance Computing PP-Distance Algorithms 
to Generate X-ray Spectra from 3D Models
– doi: 10.3390/ijms231911408

Spot-finding

Tomography reconstructions
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https://doi.org/10.1007/s11265-018-1403-6
https://doi.org/10.1038/s41592-018-0143-7
https://doi.org/10.3390%2Fijms231911408
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Field Programmable Gate Arrays
FPGAs

● arrays of logic gates
– O(10) million gates today in largest FPGAs

● ‘programmed’ by creating connections between logic blocks

● arranged in functional blocks
– DSP, logic, memory, I/O

● O(10) Tflops, comparable to GPUs
● (ordinary) programmed in specialized languages, adapted to 

electronics development (Verilog, VHDL)
– intellectual property cores (~sw module) can be purchased

● ideal for bit-level data manipulation

● FPGA boards: integrated network interfaces

FPGA chip memory

CPU connection (PCIe)

network 
interfaces
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Credit: Bittware

Credit: Kovačec, doi: 10.1007/978-3-319-14346-0_40

http://doi.org/10.1007/978-3-319-14346-0_40
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FPGA vs GPU parallelism
FPGA  is a network of (~100k) smart units

1 2 3 4

time

Input pixel buffer:

space

1 - - -t1

2 1*1 - -t2

3 2*2 1*1+1 -t3

4 3*3 2*2+1 2t4

1 2 3 4t1: Load

1*1 2*2 3*3 4*4t2: a*a

1*1+1 2*2+1 3*3+1 4*4+1t3: a*a+1

a*a + 1
Load a*a a*a+1 Store

FPGA

proc1 proc2 proc3 proc4instruct

GPU

2 5 10 17t4: Store

4 pix /4 clocks = 1 pix/clock
latency

- 4*4 3*3+1 5t5
1 pix/clock
throughput



FPGAs as a flexible factory
very parallel hardware ~ 100k of logical units
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Credit: Kovačec, doi: 10.1007/978-3-319-14346-0_40

Fr
am

ew
or
k

20
%

Global MEM interconnect (PCIe/HBM) 10%

Note: frequencies are lower 
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~100 MHz – 1.5 GHz
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Water mill powered saw in 
Wallachian museum (CZ)
Credit: Jan Polák

http://doi.org/10.1007/978-3-319-14346-0_40


Access to FPGAs
One size does not fit all

● cost and power effecSve FPGAs … for professional applicaSons and hobbyists … or low power (outer space applicaSons)
– 100k gates, O(0.5) GB mem, 1 Gbs Ethernet, O(100) MHz, O(2) W
– O(200) USD (development kit or module/minicomputer)
– shop: distributors of electronic components
– popular development kits: PYNQ for Zynq SoC or DE10-Nano Kit
– sign for academic programmes

● medium size FPGAs
– 1M gates, O(16) GB mem, 40-160 Gbs, O(300) MHz, O(50) W
– O(4-6) 1000 USD

● large and extra large FPGAs
– O(10)M gates, O(32) GB mem, 400 Gbs – 1.2 Tbs, O(500) MHz, O(150) W
– > O(6-14) 1000 USD

● DevCloud: github.com/intel/FPGA-Devcloud ⭐
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https://github.com/intel/FPGA-Devcloud


Data processing with FPGAs
Definitions
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Fast
• low latency or high throughput ?
• processing independent data elements: 

frames, pixels, bytes, bits:
• 4 Mpix detector, 2 kHz frame rate
• => 4Mpix * 2kHz = 8 Gpix/s
• (16 bits int) 2 Bytes/pix => 16 GB/s

• fast … high throughput
• … many frames per sec (Hz>>1)
• … many pixels/s (Gpix/s>>1)
• … many bytes/s (GB>>1)

Real Jme
• predicable, fixed and low latency
• FPGA clocks O(200) MHz -> 5 ns
• FPGA clock can be synchronized with external 

timing system (accelerator/machine) with sub-
pico-second precision

• processing a diffraction image may be many 
clocks … 32 pix/clock, 4 Mpix image =>
4 Mpix / 32pix * 5 ns = 0.625 ms 

Curiosity:
• CPU servers … O(5) Tflops
• GPUs … O(10) Tflops
• Detectors: O(2) Gpix/s … factor of >2000 ?
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● highl level tools for FPGAs
– Synchronous Message Exchange (SME): github.com/kenkendk/sme

• Kenneth Skovhede & Carl Johansen (Niels Bohr Institute)
• C#/C++/Python -> SMEIL (SME intermediate language) -> VHDL -> bitstream
• vendor agnostic

– OpenCL or SYCL/OneAPI
• “C/C++ with pragmas”, OpenCL is an older standard used also for GPUs
• FPGAs in DevCloud or in production at MAX IV

– High Level Synthesis (HLS)
• “C/C++ with pragmas”

● orchestration on host (CPU)
– Python or C++

● HDF5
– libhdf5 or h5py

language: OpenCL/C
code is hw agnostic

alg. core: 36 lines
host: PyOpenCL

Programming FPGAs for scientific data processing 
tools

https://github.com/kenkendk/sme


Frameworks
Hardware and language is not all that ma8ers

● Using a “productivity” framework may accelerate the FPGA project,
. . . especially if one is starting with programming hardware.

● Popular frameworks:
– PYNQ: HLS + Python and Jupyter (notebooks)
– OpenCL
– OneAPI (C++) + SYCL
– OpenCAPI + HLS

● Advantages:
– No need of “writing Linux/Windows drivers”
– No need of extensive knowledge of FPGA-tools ecosystem for electrical engineers
– Simplified FPGA (re)programming
– Diagnostic utilities
– API for C++ or Python
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www.pynq.io

http://www.pynq.io/


HDF5 data with FPGAs
key components
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Credit: Unknown Authors, 
licneced under CC BY-SA

CPU

h5py.h5d.
read_direct_chunk

pyopencl.
enqueue_copy

pyopencl.
enqueue_nd_range_kernel

bitshuffle.
decompress_lz4

HDF5 direct chunk read
is the “key” ingredient that allows 

this work.

decompression on CPU is 
optional … should be 
removed in future … 2nd 
part of the talk 

https://creativecommons.org/licenses/by-sa/3.0/
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Azimuthal integration
Data processing example: 2D image -> 1D pattern

● for each image pixel (n,m->ipix … linearized index):
1. trigonometric calc. -> scattering angle (2Qn,m)
2. binning (2Qn,m) -> single index (iout-bin)
3. intensity corrections 
4. histogram, bincount or sparse matrix multiplication

detector image

2Qmin 2Qmax

detector image

index (iout-bin)corrected pixel counts 
added to a bin

or splitted between 
several bins

2Qn,m

pixel

pixel splitting
𝐼(2Θ)!"#$ = '

#%#&'(

)!"#

𝐴!"#$,#%#& 𝐼𝑚𝑔#%#&
∈ ℝ ∈ ℝ ∈ ℤ

sparse matrix A . . . 
• real numbers
• geometry, calibration, physics of pixel 

and intensity corrections
• size: ~ 10k x 1M

sI . . . experimental error propagation

• split physics and 
computation

• use
• bincount
• sparse matrix 

multiplication

fast with FPGA

keeping flexible on CPU
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Basic algorithm on FPGAs
bincount - first implementa@on

● bincount: simple algorithm similar to computing histogram
– result kept in “local” memory (FPGA Block or Ultra RAM)
– If position_old == position_new:

• True: accumulate (sum values)
• False: store old acc, load new acc, accumulate

– 1 pixel per clock (per processing unit)
● by Carl Johansen (NBI) using Synchronous Message Exchange (SME) – in 1 day
● initially only for integers
● performance numbers:

– small FPGA at 100 MHz: 1 Gpix/s (10% util. per processing unit)
– large FPGA at 590 MHz: 20 Gpix/s (3% util. per unit)

● ref: github.com/bh107/SME-Binning
● OpenCL/OneAPI/HLS:

– one of many FPGA programming “tricks” often called “Shannonization” (Claude Shannon)

http://github.com/bh107/SME-Binning


● initially only for integers -> real-numbers corrections -> floats(32)

● need for pixel “reordering” (bisort + resort)

● again 1 pix/clock/pipeline

● Performance prediction:
– 1 pipeline … 1.25% of FPGA resources
– 1 decompression pipeline … 1%
– 20% for the framework + 32 pipelines * (1.25+1)% = 92% FPGA utilization
– 1 pix/s * 32 pipelines * 360 MHz = 11.5 Gpix/s
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Basic algorithm on FPGAs
bincount + bisort & resort for floating point data

Credit: by Octotron - own work,
CC BY-SA 3.0

Bitonic sorter

can be expressed as 
systolic array

-> very suitable for FPGA
 

https://commons.wikimedia.org/w/index.php?curid=6451008
https://commons.wikimedia.org/w/index.php?curid=6451008
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Performance figures
AZINT bincount – FPGAs with OpenCL, no decompression

*comparable to NVIDIA V100 (~ 6 Gpix/s, 12 nm process)

Medium Large comment

size medium large

FPGA Aria 10 GX Stratix 10 MX

process 20 nm 14 nm

memory 2 x DDR3 2 x HBM2

QSPF 2x10/40 Gbs 4 x 100 Gbs

framework OpenCL OpenCL

processing pipelines 32 32 pix/s

ALUTs utilization 45% 40%

RAMs utilization 60% 25% fp32, 8k bins

frequency / ideal (MHz) 205 / 240 360 / 480

host-to-device bandwidth 4.7 GB/s 5.6 GB/s x8 PCIe Gen3, can handle 4.5M x 500 Hz ✅

processing (virtual) pixel rate 5.7 Gpix/s* 8.9 Gpix/s allows pixel-splitting = 3 ✅

Credit: Bittware
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FPGA result in 7.6 sec

AZINT & bincount
gitlab.com/MAXIV-SCISW/compute-fpgas/bincount

Open-source license

https://gitlab.com/MAXIV-SCISW/compute-fpgas/bincount


Decompression on FPGAs with OpenCL
bitshuffle & lz4 
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Credit: oneAPI-sample at GitHub.com

• key component: LZ77 
decoder
• history buffer
• multi-byte in / out

• oneAPI -> OpenCL 
retrofitting done
in few hours :-)

• Snappy reader being 
replaced by lz4 reader

• bitshuffle stage needs 
to be added 



lz4 reader
lz4 sequence

● multi-byte in / out
● out: LZ77 instructions

– multiple literals
– single match-copy operation
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each byte adds max 255
to literals length

unlimited length

Credit: by Cyan,
http://fastcompression.blogspot.com/
2011/05/lz4-explained.html

Token OffsetLiteralsLiterals length+ (optional) Match length+ (optional)

1 byte 0-N bytes 0-L bytes 2 bytes 0-M bytes
little endian

Token: literals length (4 high bits), match length (4 low bits)

http://fastcompression.blogspot.com/2011/05/lz4-explained.html
http://fastcompression.blogspot.com/2011/05/lz4-explained.html


lz4 – statistics
bitshuffle & lz4 in pure Python and numpy 
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Note: each byte adds only max 255 to length 

©Dectris Eiger, 32 bit, 16 Mpix, MX experiment



lz4 – statistics
bitshuffle & lz4 in pure Python and numpy
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85.0 percentile is 5.0
85.4% entries have max len 5 bytes
82.2% entries have max len 4 bytes
33.8% entries have max len 3 bytes

• e.g. 3 bytes are pure match-copy ops
• optimizations
• speculate 3-5 bytes sequences 
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Summary
● we can do data processing like AZINT on FPGAs with 

the standard scientific precision
● we use direct chunk read to get uncompressed data
● having decompression on FPGAs is close 
● AZINT & bincount & bslz4:

gitlab.com/MAXIV-SCISW/compute-fpgas

MAX IV Laboratory, Lund
Artur Barczyk
Andrii Salnikov 

Clemens Weninger
Thank you for your 

attention

Niels Bohr Institute, Copenhagen
Kenneth Skovhede
Carl Johnsen
Brian Vinter
Mads Jörgensen

https://gitlab.com/MAXIV-SCISW/compute-fpgas/bincount

