
Compression Plugins in h5wasm
Reading/writing compressed HDF5 on the web

Brian B. Maranville

NIST Center for Neutron Research

HDF User Group Meeting 2023-09-19

Motivation: NCNR use case

• 655,778+ NeXus datafiles in existing public HTTP repository

• Desire for zero-install viewer/exploration tool

• Desire for viewing user-generated files
• User-owned HDF5 (processed) outputs from NeXus inputs

• Use same viewer for raw and processed data

• Required traceability:
• Individual files with separately stored hash (SHA-256)

• DOI for resolving file folders

2

Chosen solution: browser-native viewer

• Backend (HDF5 reading library)
• jsfive (pure javascript port of pyfive)

• Direct implementation from HDF5 spec

• Limited coverage of specification – hard to expand

• h5wasm (Emcscripten-compiled high-level library)
• Built against full HDF5 C API

• Frontend (plotting, tree browser)
• Started with in-house viewer (jQuery + D3 + jsfive)

• Moving to PaNOSC h5web https://h5web.panosc.eu

3

https://h5web.panosc.eu

h5wasm: JS/WASM library for HDF5

1. High-level utilities developed in TypeScript
• Open File objects in read, append or write mode
• Read or create groups, datasets and attributes
• Modeled after (but much more limited than) h5py
• Calls low-level functions from webassembly (WASM) library

2. C++ library compiled to WASM with Emscripten
• Using the HDF5 C API (currently version 12.2.2)
• Linking to pre-built https://github.com/usnistgov/libhdf5-wasm

• Source: https://github.com/usnistgov/h5wasm

• Package: https://www.npmjs.com/package/h5wasm

4

https://github.com/usnistgov/libhdf5-wasm
https://github.com/usnistgov/h5wasm
https://www.npmjs.com/package/h5wasm

Emscripten

• Compile C, C++ sources (or any language using LLVM) to webassembly

• Include Javascript loader (optionally)
• With POSIX emulated filesystem (FS)

• Additional FS features available, e.g.
• IDBFS to persist FS across browser restart with builtin DB

• NODERAWFS to use OS filesystem in nodejs

• Lazy file loading: can read files as a stream

• API for calling WASM functions, allocating memory (pointers)

• Limited support for dynamic linking:
• MAIN_MODULE and SIDE_MODULE

• Use convenient emcmake and emmake wrappers

5

Who is using h5wasm?

• myHDF5: https://myhdf5.hdfgroup.org/
• Viewing local files for users

• Viewing remote files by URL

• 2d and 1d plotting, table view, etc...

• PaNOSC h5web: https://h5web.panosc.eu/h5wasm
• Like myHDF5, plus supports NeXus namespace

• H5web for VSCode extension > 10,000 installs

• NIST Center for Neutron Research:
• NeXus viewer https://ncnr.nist.gov/ncnrdata/view/nexus-hdf-viewer.html

• Specialized viewers for SANS, reflectometry instruments

6

https://myhdf5.hdfgroup.org/
https://h5web.panosc.eu/h5wasm
https://ncnr.nist.gov/ncnrdata/view/nexus-hdf-viewer.html

Requested: compression plugins for h5wasm

• https://github.com/usnistgov/h5wasm/issues/51
• Specifically: asking for ZStandard

• https://gitlab.esrf.fr/ui/myhdf5/-/issues/3

7

https://github.com/usnistgov/h5wasm/issues/51
https://gitlab.esrf.fr/ui/myhdf5/-/issues/3

Support for filter plugins in h5wasm

• h5wasm is (now) built to allow dynamic linking!
• as of v0.5.0, released 2023-05-15

• using emscripten flag "MAIN_MODULE=2"

• Plugins can be used by
• Compiling with emcc -s SIDE_MODULE=1

• At runtime, write to emscripten virtual file system (FS)
• Fetch file contents to Uint8Array

• Write with FS.writeFile

• Use destination path "/usr/local/hdf5/lib/plugin" (set at compile-time for h5wasm)

8

Example: building ZStandard plugin

• Started with plugin sources from https://github.com/silx-
kit/hdf5plugin/
• Zstd_h5plugin.c

• Zstd_h5plugin.h

• CMakeLists.txt

• Make adjustments to build with Emscripten
• Use pre-built libhdf5-wasm

• Build dependencies as static libs

9

https://github.com/silx-kit/hdf5plugin/
https://github.com/silx-kit/hdf5plugin/

ZStandard plugin: add HDF5 library

• In CMakeLists.txt:
cmake_minimum_required(VERSION 3.14)

include(FetchContent)

FetchContent_Declare(

 libhdf5-wasm

 URL https://github.com/usnistgov/libhdf5-wasm/releases/download/v0.3.0_3.1.28/libhdf5-1_12_2-
wasm.tar.gz

 URL_HASH SHA256=7089f9bf29dc3759d7aa77848cfa12d546eabd152d40dd00a90aace99c056600

)

FetchContent_MakeAvailable(libhdf5-wasm)

10

https://github.com/usnistgov/libhdf5-wasm/releases/download/v0.3.0_3.1.28/libhdf5-1_12_2-wasm.tar.gz
https://github.com/usnistgov/libhdf5-wasm/releases/download/v0.3.0_3.1.28/libhdf5-1_12_2-wasm.tar.gz

ZStandard plugin: add libzstd

FetchContent_Declare(

 zstd

 GIT_REPOSITORY https://github.com/facebook/zstd

 SOURCE_SUBDIR build/cmake

 GIT_TAG v1.5.5

)

set(ZSTD_MULTITHREAD_SUPPORT OFF CACHE INTERNAL "")

set(ZSTD_BUILD_PROGRAMS OFF CACHE INTERNAL "")

set(ZSTD_BUILD_STATIC ON CACHE INTERNAL "")

FetchContent_MakeAvailable(zstd)

11

https://github.com/facebook/zstd

ZStandard plugin: add target

set(PLUGIN_SOURCES zstd_h5plugin.c)

HDF5 plugin as static library

add_library(zstd_h5_plugin STATIC ${PLUGIN_SOURCES})

target_include_directories(zstd_h5_plugin PRIVATE "${zstd_SOURCE_DIR}/lib")

set_target_properties(zstd_h5_plugin PROPERTIES

 OUTPUT_NAME H5Zzstd

 POSITION_INDEPENDENT_CODE ON

)

target_link_libraries(zstd_h5_plugin hdf5-wasm libzstd_static)

12

ZStandard plugin: custom .so target

• Need custom CMake command to combine libraries with emcc the
Emscripten way?

create combined library (including libzstd)

set(OUTPUT_FILE libH5Zzstd.so CACHE INTERNAL "Output file name")

add_custom_target(zstd_h5_plugin_shared ALL

 COMMAND

 ${CMAKE_C_COMPILER} -s SIDE_MODULE=1 libH5Zzstd.a ${zstd_BINARY_DIR}/lib/libzstd.a -o ${CMAKE_CURRENT_BINARY_DIR}/${OUTPUT_FILE}

 DEPENDS zstd_h5_plugin libzstd_static

)

set(PLUGIN_DIR ${CMAKE_CURRENT_SOURCE_DIR}/../dist CACHE PATH "")

install(PROGRAMS ${CMAKE_CURRENT_BINARY_DIR}/${OUTPUT_FILE} DESTINATION ${PLUGIN_DIR})

13

ZStandard plugin: build

• In a shell:
• emcmake cmake -S . -B build

• cd build && emmake make install

• Result:
• libzstd_static: build/_deps/zstd-build/lib/libzstd.a

• zstd_h5_plugin: build/libH5Zzstd.a

• zstd_h5_plugin_shared: ../dist/libH5Zzstd.so

• Testing: read a dataset made with **hdf5plugin.Zstd()
• Success!

14

Next example: LZ4 plugin

• Compiling LZ4 plugin worked but had runtime errors

• Could not find
• From <arpa/inet.h>: htonl, htons, ntohl, ntohs

• From HDF5: H5allocate_memory, H5free_memory

• Solution: added these to compile options of h5wasm
• -s EXPORTED_FUNCTIONS=[

 '_H5Fopen', '_H5Fclose', '_H5Fcreate', '_malloc', '_free',
'_stderr', '_memset', '_memcpy', '_htonl', '_htons', '_ntohl', '_ntohs',
'_H5allocate_memory', '_H5free_memory']

• No appreciable increase in library size (still 3.3 MB)

15

Dynamic linking with h5wasm: extra symbols

• Symbols needed by plugin may not be exported

• Solution 1: Export all symbols for maximum flexibility
• Compiler setting: MAIN_MODULE=1

• stdlib is included

• h5wasm library is 9.6 MB

• Solution 2: Export extra symbols as needed
• Compiler setting: MAIN_MODULE=2

• h5wasm library is 3.3 MB

• Specify extra symbols in EXPORTED_FUNCTIONS

• New plugins might require new release of h5wasm

16

Other issues: Chrome max. plugin size

• Chrome will not load plugins > 4kB in the main thread
• Can load in a web worker or preload

• Chrome increased the limit while I was working on this
• Upper limit is now 8 MB

• Some plugins so far:
• LibH5Zztd.so is 755 kB

• libH5Zlz4.so is 860 kB

• Firefox and Safari don't seem to have this limit

17

Make h5wasm plugins widely available

• Public plugin repo based
on https://github.com/HDFGroup/hdf5_plugins

• Similar to h5py plugins at https://github.com/silx-kit/hdf5plugin

• Need contributing developers with knowledge of:
• Emscripten
• CMake for build specifications
• Github actions for automated builds / testing
• Specific HDF5 plugins and supporting libraries

• Deploy built plugins to public CDN
• npmjs.com
• Github releases

18

https://github.com/HDFGroup/hdf5_plugins
https://github.com/silx-kit/hdf5plugin

Initial effort: h5wasm-plugins

• https://github.com/bmaranville/h5wasm-plugins

• Plugins compiled so far:
• ZStandard
• LZ4
• BZip2

• Still to do:
• Packaging for use in bundlers
• Publish to npm
• Add tests/testing infrastructure
• Add custom plugin path
• Add "install" command to place plugins in path

19

https://github.com/bmaranville/h5wasm-plugins

Make h5wasm + plugins sustainable

• Currently:
• Public repo in a private Github organization (usnistgov)

• Pull requests must be accepted by organization member
• Single lead contributor

• No succession plan for when contributor retires someday

• Future:
• Move to community-supported organization?

• h5wasm repo (https://github.com/usnistgov/h5wasm)
• libhdf5-wasm repo (https://github.com/usnistgov/libhdf5-wasm)
• h5wasm-plugins repo (https://github.com/bmaranville/h5wasm-plugins) (NEW!)

• Multiple members of organization
• Needs appropriate license

20

https://github.com/usnistgov/h5wasm
https://github.com/usnistgov/libhdf5-wasm
https://github.com/bmaranville/h5wasm-plugins

Conclusions

• Plugin infrastructure seems to work on the web
• With recent changes in Chrome, no need to use special workers

• Adding new plugins will take dedicated effort
• Compiling all dependencies from source

• Adjusting build settings for emscripten

• Troubleshooting in non-standard enviroment (browser developer console!)

• Choose between exporting all symbols (bigger) and targeted export

• Deploying and maintaining plugins package
• Should be shared community effort for sustainability

21

Thanks to...

• HDF5 Group

• Aaron Lun (@LTLA)
• packaging libhdf5-wasm for CMake

• Loïc Huder (@loichuder), Axel Bocciarelli (@axelboc)
• Creating and maintaining h5web (silx-kit)

• Adding features to h5wasm to support integration with h5web

• TypeScript types for h5web

• silx-kit team
• Plugin implementations for h5py (used to start h5wasm plugins)

22

Abstract

H5wasm is a webassembly-based library for reading and writing HDF5 files, which can be used natively in a web browser or in
a local nodejs environment. The library has no external runtime dependencies, and is used in some online HDF5 viewers
that don't require server-side processing: https://h5web.panosc.eu/h5wasm and https://myhdf5.hdfgroup.org/

The community has requested more compression plugins (e.g. ZSTANDARD) for h5wasm beyond the (included) DEFLATE,
SHUFFLE, FLETCHER32 and SCALEOFFSET filters. In my talk I will discuss issues associated with adding plugins to h5wasm

• For collaborative work on h5wasm, a change from single-maintainer in a private organization (github/usnistgov)

• Incomplete support for dynamic linking in emscripten (MAIN_MODULE/SIDE_MODULE)

• Complex dependency chains for some plugins (all libraries have to be compiled to WASM)

• Browser limitations (e.g. max 4KB dynamic WASM loading in Chrome)

• I will demonstrate a proof-of-concept build of h5wasm including a ZSTANDARD plugin, and discuss why I was not able to
easily build an LZ4 plugin.

• We can discuss a shared effort on building a repository for h5wasm like the the h5py plugins at https://github.com/silx-
kit/hdf5plugin, also based on https://github.com/HDFGroup/hdf5_plugins. We could use people with skills in CMake,
Emscripten, TypeScript and of course the HDF5 C API.

23

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fh5web.panosc.eu%2Fh5wasm&data=05%7C01%7Cbrian.maranville%40nist.gov%7C42616cec144343aeaa0808dbaaf57497%7C2ab5d82fd8fa4797a93e054655c61dec%7C1%7C0%7C638291743440275046%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=QyOdDh7I1dI0EdlwwwaVLEvEFeIYf4b2p2pW90ufVK4%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fmyhdf5.hdfgroup.org%2F&data=05%7C01%7Cbrian.maranville%40nist.gov%7C42616cec144343aeaa0808dbaaf57497%7C2ab5d82fd8fa4797a93e054655c61dec%7C1%7C0%7C638291743440275046%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=inNuqGX5fOB%2FjwVc51gUxPxNUhCAd98AKyCbO2VAvPg%3D&reserved=0
https://github.com/silx-kit/hdf5plugin
https://github.com/silx-kit/hdf5plugin
https://github.com/HDFGroup/hdf5_plugins

Using h5wasm with plugin:

import h5wasm from "h5wasm";

await h5wasm.ready; // Emscripten wasm loader...

const file_buffer = await (await fetch("https://my.repo/data.h5")).arrayBuffer();

// write file to Emscripten filesystem:

h5wasm.FS.writeFile("data.h5", new Uint8Array(file_buffer));

const plugin_buffer = await (await fetch("https://my.repo/plugins/libH5Zlz4.so")).arrayBuffer();

// write plugin to filesystem:

h5wasm.FS.mkdirTree("/usr/local/hdf5/lib/plugin");

h5wasm.FS.writeFile("/usr/local/hdf5/lib/plugin/libH5Zlz4.so", new Uint8Array(plugin_buffer));

const f = new h5wasm.File("data.h5", "r");

f.get("data").value; // decompressed numbers

24

	Slide 1: Compression Plugins in h5wasm
	Slide 2: Motivation: NCNR use case
	Slide 3: Chosen solution: browser-native viewer
	Slide 4: h5wasm: JS/WASM library for HDF5
	Slide 5: Emscripten
	Slide 6: Who is using h5wasm?
	Slide 7: Requested: compression plugins for h5wasm
	Slide 8: Support for filter plugins in h5wasm
	Slide 9: Example: building ZStandard plugin
	Slide 10: ZStandard plugin: add HDF5 library
	Slide 11: ZStandard plugin: add libzstd
	Slide 12: ZStandard plugin: add target
	Slide 13: ZStandard plugin: custom .so target
	Slide 14: ZStandard plugin: build
	Slide 15: Next example: LZ4 plugin
	Slide 16: Dynamic linking with h5wasm: extra symbols
	Slide 17: Other issues: Chrome max. plugin size
	Slide 18: Make h5wasm plugins widely available
	Slide 19: Initial effort: h5wasm-plugins
	Slide 20: Make h5wasm + plugins sustainable
	Slide 21: Conclusions
	Slide 22: Thanks to...
	Slide 23: Abstract
	Slide 24: Using h5wasm with plugin:

