Theory of Axions and ALPs: where to find them

Andreas Ringwald FH Particle Physics Discussion: Axions at LHC and ALPS II DESY, Hamburg, June 5, 2023

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

• Axion–Like Particles (ALPs), a, are pseudoscalar pseudo-Nambu-Goldstone bosons arising from approximate Abelian global symmetries beyond the SM which are broken spontaneously at a scale f_a much greater than the electroweak scale v

ALP Definition

- Axion–Like Particles (ALPs), a, are pseudoscalar pseudo-Nambu-Goldstone bosons arising from approximate Abelian global symmetries beyond the SM which are broken spontaneously at a scale f_a much greater than the electroweak scale v
- At the latter, their most general interactions with the SM fermions ψ_F and the SM $SU(3)_c$, $SU(2)_L$ and $U(1)_Y$ gauge field strengths $G^a_{\mu\nu}$, $W^A_{\mu\nu}$ and $B_{\mu\nu}$, respectively, and their duals (denoted by a tilde) are summarised by the following low-energy effective Lagrangian

$$\mathcal{L}_{\text{eff}} = \frac{1}{2} \left(\partial_{\mu} a \right) \left(\partial^{\mu} a \right) - \frac{m_{a,0}^2}{2} a^2 + \frac{\partial^{\mu} a}{f_a} \sum_{F} \left(\bar{\psi}_F \gamma_{\mu} C_F \psi_F \right) + C_{aGG} \frac{\alpha_s}{8\pi} \frac{a}{f_a} \left(G^a_{\mu\nu} \tilde{G}^{\mu\nu,a} \right) + C_{aWW} \frac{\alpha_2}{8\pi} \frac{a}{f_a} \left(W^A_{\mu\nu} \tilde{W}^{\mu\nu,A} \right) + C_{aBB} \frac{\alpha_1}{8\pi} \frac{a}{f_a} B_{\mu\nu} \tilde{B}^{\mu\nu}$$

Definition

- Axion–Like Particles (ALPs), a, are pseudoscalar pseudo-Nambu-Goldstone bosons arising from approximate Abelian global symmetries beyond the SM which are broken spontaneously at a scale f_a much greater than the electroweak scale v
- At the latter, their most general interactions with the SM fermions ψ_F and the SM $SU(3)_c$, $SU(2)_L$ and $U(1)_Y$ gauge field strengths $G^a_{\mu\nu}$, $W^A_{\mu\nu}$ and $B_{\mu\nu}$, respectively, and their duals (denoted by a tilde) are summarised by the following low-energy effective Lagrangian

$$\mathcal{L}_{\text{eff}} = \frac{1}{2} \left(\partial_{\mu} a \right) \left(\partial^{\mu} a \right) - \frac{m_{a,0}^2}{2} a^2 + \frac{\partial^{\mu} a}{f_a} \sum_{F} \bar{\psi}_F \gamma_{\mu} C_F \psi_F + C_{aGG} \underbrace{\alpha_s}_{8\pi} \frac{a}{f_a} G^a_{\mu\nu} \tilde{G}^{\mu\nu,a} + C_{aWW} \underbrace{\alpha_2}_{8\pi} \frac{a}{f_a} W^A_{\mu\nu} \tilde{W}^{\mu\nu,A} + C_{aBB} \underbrace{\alpha_1}_{8\pi} \frac{a}{f_a} B_{\mu\nu} \tilde{B}^{\mu\nu}$$

• Here, $\alpha_s = g_s^2/(4\pi)$, $\alpha_2 = g^2/(4\pi)$ and $\alpha_1 = {g'}^2/(4\pi)$ are the respective SM gauge coupling parameters

Definition

- Axion–Like Particles (ALPs), a, are pseudoscalar pseudo-Nambu-Goldstone bosons arising from approximate Abelian global symmetries beyond the SM which are broken spontaneously at a scale f_a much greater than the electroweak scale v
- At the latter, their most general interactions with the SM fermions ψ_F and the SM $SU(3)_c$, $SU(2)_L$ and $U(1)_Y$ gauge field strengths $G^a_{\mu\nu}$, $W^A_{\mu\nu}$ and $B_{\mu\nu}$, respectively, and their duals (denoted by a tilde) are summarised by the following low-energy effective Lagrangian

$$\begin{aligned} \mathcal{L}_{\text{eff}} &= \frac{1}{2} \left(\partial_{\mu} a \right) (\partial^{\mu} a) - \frac{m_{a,0}^{2}}{2} a^{2} + \frac{\partial^{\mu} a}{f_{a}} \sum_{F} \bar{\psi}_{F} \gamma_{\mu} C_{F} \psi_{F} \\ &+ C_{aGG} \frac{\alpha_{s}}{8\pi} \frac{a}{f_{a}} G_{\mu\nu}^{a} \tilde{G}^{\mu\nu,a} + C_{aWW} \frac{\alpha_{2}}{8\pi} \frac{a}{f_{a}} W_{\mu\nu}^{A} \tilde{W}^{\mu\nu,A} + C_{aBB} \frac{\alpha_{1}}{8\pi} \frac{a}{f_{a}} B_{\mu\nu} \tilde{B}^{\mu\nu} \end{aligned}$$

• Here, $\alpha_s = g_s^2/(4\pi)$, $\alpha_2 = g^2/(4\pi)$ and $\alpha_1 = g'^2/(4\pi)$ are the respective SM gauge coupling parameters, and F denotes the left-handed fermion multiplets in the SM

Definition

- Axion–Like Particles (ALPs), a, are pseudoscalar pseudo-Nambu-Goldstone bosons arising from approximate Abelian global symmetries beyond the SM which are broken spontaneously at a scale f_a much greater than the electroweak scale v
- At the latter, their most general interactions with the SM fermions ψ_F and the SM $SU(3)_c$, $SU(2)_L$ and $U(1)_Y$ gauge field strengths $G^a_{\mu\nu}$, $W^A_{\mu\nu}$ and $B_{\mu\nu}$, respectively, and their duals (denoted by a tilde) are summarised by the following low-energy effective Lagrangian

$$\mathcal{L}_{\text{eff}} = \frac{1}{2} \left(\partial_{\mu} a \right) \left(\partial^{\mu} a \right) - \frac{m_{a,0}^2}{2} a^2 + \frac{\partial^{\mu} a}{f_a} \sum_{F} \bar{\psi}_F \gamma_{\mu} C_F \psi_F$$
$$+ \underbrace{C_{aGG}}_{8\pi} \frac{\alpha_s}{f_a} \frac{a}{f_a} G^a_{\mu\nu} \tilde{G}^{\mu\nu,a} + \underbrace{C_{aWW}}_{2} \frac{\alpha_2}{8\pi} \frac{a}{f_a} W^A_{\mu\nu} \tilde{W}^{\mu\nu,A} + \underbrace{C_{aBB}}_{8\pi} \frac{\alpha_1}{f_a} B_{\mu\nu} \tilde{B}^{\mu\nu}$$

• Here, $\alpha_s = g_s^2/(4\pi)$, $\alpha_2 = g^2/(4\pi)$ and $\alpha_1 = g'^2/(4\pi)$ are the respective SM gauge coupling parameters, and F denotes the left-handed fermion multiplets in the SM. C_F is a Hermitian matrix in generation space with dimensionless entries which, together with the dimensionless coefficients C_{aGG} , C_{aWW} and C_{aBB} depend on the specific UV completion featuring the Abelian global symmetry.

Field theoretic UV completion

$$\mathcal{L}_{\text{eff}} = \frac{1}{2} \left(\partial_{\mu} a \right) \left(\partial^{\mu} a \right) - \frac{m_{a,0}^2}{2} a^2 + \frac{\partial^{\mu} a}{f_a} \sum_F \bar{\psi}_F \gamma_{\mu} C_F \psi_F + C_{aGG} \frac{\alpha_s}{8\pi} \frac{a}{f_a} G^a_{\mu\nu} \tilde{G}^{\mu\nu,a} + C_{aWW} \frac{\alpha_2}{8\pi} \frac{a}{f_a} W^A_{\mu\nu} \tilde{W}^{\mu\nu,A} + C_{aBB} \frac{\alpha_1}{8\pi} \frac{a}{f_a} B_{\mu\nu} \tilde{B}^{\mu\nu}$$

- This low-energy Lagrangian realises the approximate Abelian global symmetry non-linearly through an approximate symmetry under constant shifts, $a \rightarrow a + \kappa f_a$
 - The latter arises from field-theoretic UV completions in which SM extended by complex scalar field realising a spontaneously broken global Abelian symmetry

$$\mathcal{L} \supset |\partial_{\mu}\sigma|^{2} - \lambda_{\sigma} \left(|\sigma|^{2} - \frac{f_{a}^{2}}{2} \right)^{2}$$
$$\sigma(x) = \frac{1}{\sqrt{2}} \left(f_{a} + \rho(x) \right) e^{ia(x)/f_{a}}$$

Page 7

Field theoretic UV completion

$$\mathcal{L}_{\text{eff}} = \frac{1}{2} \left(\partial_{\mu} a \right) \left(\partial^{\mu} a \right) - \frac{m_{a,0}^2}{2} a^2 + \frac{\partial^{\mu} a}{f_a} \sum_F \bar{\psi}_F \gamma_{\mu} C_F \psi_F$$
$$+ C_{aGG} \frac{\alpha_s}{8\pi} \frac{a}{f_a} G^a_{\mu\nu} \tilde{G}^{\mu\nu,a} + C_{aWW} \frac{\alpha_z}{8\pi} \frac{a}{f_a} W^A_{\mu\nu} \tilde{W}^{\mu\nu,A} + C_{aBB} \frac{\alpha_1}{8\pi} \frac{a}{f_a} B_{\mu\nu} \tilde{B}^{\mu\nu}$$

- This low-energy Lagrangian realises the approximate Abelian global symmetry non-linearly through an approximate symmetry under constant shifts, $a \rightarrow a + \kappa f_a$
 - The latter arises from field-theoretic UV completions in which SM extended by complex scalar field realising a spontaneously broken global Abelian symmetry

$$\mathcal{L} \supset |\partial_{\mu}\sigma|^{2} - \lambda_{\sigma} \left(|\sigma|^{2} - \frac{f_{a}^{2}}{2} \right)^{2}$$
$$\sigma(x) = \frac{1}{\sqrt{2}} \left(f_{a} + \rho(x) \right) e^{ia(x)/f_{a}}$$

• Derivative couplings to fermions arise , if ψ_F carry charges under Abelian symmetry

Field theoretic UV completion

$$\mathcal{L}_{\text{eff}} = \frac{1}{2} \left(\partial_{\mu} a \right) \left(\partial^{\mu} a \right) - \frac{m_{a,0}^2}{2} a^2 + \frac{\partial^{\mu} a}{f_a} \sum_{F} \bar{\psi}_F \gamma_{\mu} C_F \psi_F$$
$$+ C_{aGG} \frac{\alpha_s}{8\pi} \frac{a}{f_a} G^a_{\mu\nu} \tilde{G}^{\mu\nu,a} + C_{aWW} \frac{\alpha_2}{8\pi} \frac{a}{f_a} W^A_{\mu\nu} \tilde{W}^{\mu\nu,A} + C_{aBB} \frac{\alpha_1}{8\pi} \frac{a}{f_a} B_{\mu\nu} \tilde{B}^{\mu\nu}$$

- This low-energy Lagrangian realises the approximate Abelian global symmetry non-linearly through an approximate symmetry under constant shifts, $a \rightarrow a + \kappa f_a$
 - The latter arises from field-theoretic UV completions in which SM extended by complex scalar field realising a spontaneously broken global Abelian symmetry

$$\mathcal{L} \supset |\partial_{\mu}\sigma|^{2} - \lambda_{\sigma} \left(|\sigma|^{2} - \frac{f_{a}^{2}}{2} \right)^{2}$$
$$\sigma(x) = \frac{1}{\sqrt{2}} \left(f_{a} + \rho(x) \right) e^{ia(x)/f_{a}}$$

- Derivative couplings to fermions arise , if ψ_F carry charges under Abelian symmetry

• **Couplings to gauge fields** arise from fermionic triangle loop diagrams

Violations of shift symmetry

$$\mathcal{L}_{\text{eff}} = \frac{1}{2} \left(\partial_{\mu} a \right) \left(\partial^{\mu} a \right) - \frac{m_{a,0}^2}{2} a^2 + \frac{\partial^{\mu} a}{f_a} \sum_F \bar{\psi}_F \gamma_{\mu} C_F \psi_F + C_{aGG} \frac{\alpha_s}{8\pi} \frac{a}{f_a} G^a_{\mu\nu} \tilde{G}^{\mu\nu,a} + C_{aWW} \frac{\alpha_2}{8\pi} \frac{a}{f_a} W^A_{\mu\nu} \tilde{W}^{\mu\nu,A} + C_{aBB} \frac{\alpha_1}{8\pi} \frac{a}{f_a} B_{\mu\nu} \tilde{B}^{\mu\nu}$$

• This low-energy Lagrangian realises the approximate Abelian global symmetry non-linearly through an approximate symmetry under constant shifts, $a \rightarrow a + \kappa f_a$

$$\mathcal{L}_{\text{eff}} = \frac{1}{2} \left(\partial_{\mu} a \right) \left(\partial^{\mu} a \right) \left(-\frac{m_{a,0}^2}{2} a^2 \right) \frac{\partial^{\mu} a}{f_a} \sum_{F} \bar{\psi}_F \gamma_{\mu} C_F \psi_F + C_{aGG} \frac{\alpha_s}{8\pi} \frac{a}{f_a} G^a_{\mu\nu} \tilde{G}^{\mu\nu,a} + C_{aWW} \frac{\alpha_2}{8\pi} \frac{a}{f_a} W^A_{\mu\nu} \tilde{W}^{\mu\nu,A} + C_{aBB} \frac{\alpha_1}{8\pi} \frac{a}{f_a} B_{\mu\nu} \tilde{B}^{\mu\nu}$$

- This low-energy Lagrangian realises the approximate Abelian global symmetry non-linearly through an approximate symmetry under constant shifts, $a \rightarrow a + \kappa f_a$, broken only by
 - the bare mass term $\propto m_{a,0}^2 a^2$, which parametrises the effect of a possible explicit breaking of the global symmetry

$$\mathcal{L}_{\text{eff}} = \frac{1}{2} \left(\partial_{\mu} a \right) \left(\partial^{\mu} a \right) - \frac{m_{a,0}^2}{2} a^2 + \frac{\partial^{\mu} a}{f_a} \sum_{F} \bar{\psi}_F \gamma_{\mu} C_F \psi_F + C_{aG} \left\{ \frac{\alpha_s}{8\pi} \frac{a}{f_a} G^a_{\mu\nu} \tilde{G}^{\mu\nu,a} \right\} + C_{aWW} \frac{\alpha_2}{8\pi} \frac{a}{f_a} W^A_{\mu\nu} \tilde{W}^{\mu\nu,A} + C_{aBB} \frac{\alpha_1}{8\pi} \frac{a}{f_a} B_{\mu\nu} \tilde{B}^{\mu\nu}$$

- This low-energy Lagrangian realises the approximate Abelian global symmetry non-linearly through an approximate symmetry under constant shifts, $a \rightarrow a + \kappa f_a$, broken only by
 - the bare mass term $\propto m_{a,0}^2 a^2$, which parametrises the effect of a possible explicit breaking of the global symmetry
 - the coupling to the topological charge density, $\frac{\alpha_s}{8\pi}G^a_{\mu\nu}\tilde{G}^{\mu\nu,a}$, of the $SU(3)_c$ gauge fields

$$\mathcal{L}_{\text{eff}} = \frac{1}{2} \left(\partial_{\mu} a \right) \left(\partial^{\mu} a \right) - \frac{m_{a,0}^2}{2} a^2 + \frac{\partial^{\mu} a}{f_a} \sum_{F} \bar{\psi}_F \gamma_{\mu} C_F \psi_F$$
$$+ C_{aGG} \frac{\alpha_s}{8\pi} \frac{a}{f_a} G^a_{\mu\nu} \tilde{G}^{\mu\nu,a} + C_{aWV} \left\{ \frac{\alpha_2}{8\pi} \frac{a}{f_a} W^A_{\mu\nu} \tilde{W}^{\mu\nu,A} \right\} + C_{aBB} \frac{\alpha_1}{8\pi} \frac{a}{f_a} B_{\mu\nu} \tilde{B}^{\mu\nu}$$

- This low-energy Lagrangian realises the approximate Abelian global symmetry non-linearly through an approximate symmetry under constant shifts, $a \rightarrow a + \kappa f_a$, broken only by
 - the bare mass term $\propto m_{a,0}^2 a^2$, which parametrises the effect of a possible explicit breaking of the global symmetry
 - the coupling to the topological charge density, $\frac{\alpha_s}{8\pi}G^a_{\mu\nu}\tilde{G}^{\mu\nu,a}$, of the $SU(3)_c$ gauge fields
 - For the coupling of *a* to the
 - $SU(2)_L$ gauge fields the additional term arising from a constant shift $a \rightarrow a + \kappa f_a$ can be removed by field redefinitions

$$\mathcal{L}_{\text{eff}} = \frac{1}{2} \left(\partial_{\mu} a \right) \left(\partial^{\mu} a \right) - \frac{m_{a,0}^2}{2} a^2 + \frac{\partial^{\mu} a}{f_a} \sum_F \bar{\psi}_F \gamma_{\mu} C_F \psi_F + C_{aGG} \frac{\alpha_s}{8\pi} \frac{a}{f_a} G^a_{\mu\nu} \tilde{G}^{\mu\nu,a} + C_{aWW} \frac{\alpha_2}{8\pi} \frac{a}{f_a} W^A_{\mu\nu} \tilde{W}^{\mu\nu,A} + C_{aKB} \frac{\alpha_1}{8\pi} \frac{a}{f_a} B_{\mu\nu} \tilde{B}^{\mu\nu}$$

- This low-energy Lagrangian realises the approximate Abelian global symmetry non-linearly through an approximate symmetry under constant shifts, $a \rightarrow a + \kappa f_a$, broken only by
 - the bare mass term $\propto m_{a,0}^2 a^2$, which parametrises the effect of a possible explicit breaking of the global symmetry
 - the coupling to the topological charge density, $\frac{\alpha_s}{8\pi}G^a_{\mu\nu}\tilde{G}^{\mu\nu,a}$, of the $SU(3)_c$ gauge fields
 - For the coupling of *a* to the
 - $SU(2)_L$ gauge fields the additional term arising from a constant shift $a \rightarrow a + \kappa f_a$ can be removed by field redefinitions
 - $U(1)_Y$ gauge field, the additional term is unobservable in the SM

Violations of shift symmetry

$$\mathcal{L}_{\text{eff}} = \frac{1}{2} \left(\partial_{\mu} a \right) \left(\partial^{\mu} a \right) - \frac{m_{a,0}^2}{2} a^2 + \underbrace{\int_a^{\mu} a}_{F} \sum_F \bar{\psi}_F \gamma_{\mu} C_F \psi_F + C_{aGG} \frac{\alpha_s}{8\pi} \underbrace{a}_{f_a}^a G^{\mu\nu,a}_{\mu\nu} + C_{aWW} \frac{\alpha_2}{8\pi} \underbrace{a}_{f_a}^a W^A_{\mu\nu} \tilde{W}^{\mu\nu,A} + C_{aBB} \frac{\alpha_1}{8\pi} \underbrace{a}_{f_a}^a B_{\mu\nu} \tilde{B}^{\mu\nu}$$

- This low-energy Lagrangian realises the approximate Abelian global symmetry non-linearly through an approximate symmetry under constant shifts, $a \rightarrow a + \kappa f_a$, broken only by
 - the bare mass term $\propto m_{a,0}^2 a^2$, which parametrises the effect of a possible explicit breaking of the global symmetry
 - the coupling to the topological charge density, $\frac{\alpha_s}{8\pi}G^a_{\mu\nu}\tilde{G}^{\mu\nu,a}$, of the $SU(3)_c$ gauge fields
 - For the coupling of *a* to the
 - $SU(2)_L$ gauge fields the additional term arising from a constant shift $a \rightarrow a + \kappa f_a$ can be removed by field redefinitions
 - $U(1)_Y$ gauge field, the additional term is unobservable in the SM
- Since interactions with SM inversely proportional to f_a : ALPs with $f_a \gg v$ are feebly-interacting pseudoscalar particles

DESY. | Theory of Axions and ALPs: where to find them | FH Particle Physics Discussion: Axions at LHC and ALPS II, DESY, Hamburg, June 5, 2023

Definition

• The axion, arising from the Peccei-Quinn (PQ) solution of the strong CP problem, is defined via $C_{aGG} \neq 0$ and $m_{a,0} = 0$:

$$\mathcal{L}_{\text{eff}} = \frac{1}{2} \left(\partial_{\mu} a \right) \left(\partial^{\mu} a \right) + \frac{\partial^{\mu} a}{f_{a}} \sum_{F} \bar{\psi}_{F} \gamma_{\mu} C_{F} \psi_{F}$$
$$+ C_{aGG} \frac{\alpha_{s}}{8\pi} \frac{a}{f_{a}} G^{a}_{\mu\nu} \tilde{G}^{\mu\nu,a} + C_{aWW} \frac{\alpha_{2}}{8\pi} \frac{a}{f_{a}} W^{A}_{\mu\nu} \tilde{W}^{\mu\nu,A} + C_{aBB} \frac{\alpha_{1}}{8\pi} \frac{a}{f_{a}} B_{\mu\nu} \tilde{B}^{\mu\nu}$$

Definition

• The axion, arising from the Peccei-Quinn (PQ) solution of the strong CP problem, is defined via $C_{aGG} \neq 0$ and $m_{a,0} = 0$:

$$\mathcal{L}_{\text{eff}} = \frac{1}{2} \left(\partial_{\mu} a \right) \left(\partial^{\mu} a \right) + \frac{\partial^{\mu} a}{f_{a}} \sum_{F} \bar{\psi}_{F} \gamma_{\mu} C_{F} \psi_{F}$$
$$+ C_{aGG} \frac{\alpha_{s}}{8\pi} \frac{a}{f_{a}} G^{a}_{\mu\nu} \tilde{G}^{\mu\nu,a} + C_{aWW} \frac{\alpha_{2}}{8\pi} \frac{a}{f_{a}} W^{A}_{\mu\nu} \tilde{W}^{\mu\nu,A} + C_{aBB} \frac{\alpha_{1}}{8\pi} \frac{a}{f_{a}} B_{\mu\nu} \tilde{B}^{\mu\nu}$$

• In fact, in this case, one can eliminate the CP-violating QCD $\bar{\theta}$ -term, $\bar{\theta} \frac{\alpha_s}{8\pi} G^a_{\mu\nu} \tilde{G}^{\mu\nu,a}$, by the shift $a \to a - \bar{\theta} f_a / C_{aGG}$

Definition

• The axion, arising from the Peccei-Quinn (PQ) solution of the strong CP problem, is defined via $C_{aGG} \neq 0$ and $m_{a,0} = 0$:

$$\mathcal{L}_{\text{eff}} = \frac{1}{2} \left(\partial_{\mu} a \right) \left(\partial^{\mu} a \right) + \frac{\partial^{\mu} a}{f_a} \sum_{F} \bar{\psi}_F \gamma_{\mu} C_F \psi_F + C_{aGG} \frac{\alpha_s}{8\pi} \frac{a}{f_a} G^a_{\mu\nu} \tilde{G}^{\mu\nu,a} + C_{aWW} \frac{\alpha_2}{8\pi} \frac{a}{f_a} W^A_{\mu\nu} \tilde{W}^{\mu\nu,A} + C_{aBB} \frac{\alpha_1}{8\pi} \frac{a}{f_a} B_{\mu\nu} \tilde{B}^{\mu\nu}$$

- In fact, in this case, one can eliminate the CP-violating QCD $\bar{\theta}$ -term, $\bar{\theta} \frac{\alpha_s}{8\pi} G^a_{\mu\nu} \tilde{G}^{\mu\nu,a}$, by the shift $a \to a \bar{\theta} f_a / C_{aGG}$
- Non-perturbative topological fluctuations of the gluon fields in QCD induce a potential for the shifted field whose minimum is at zero field value, thereby ensuring CP conservation of strong interactions

Definition

• The axion, arising from the Peccei-Quinn (PQ) solution of the strong CP problem, is defined via $C_{aGG} \neq 0$ and $m_{a,0} = 0$:

$$\mathcal{L}_{\text{eff}} = \frac{1}{2} \left(\partial_{\mu} a \right) \left(\partial^{\mu} a \right) + \frac{\partial^{\mu} a}{f_a} \sum_{F} \bar{\psi}_F \gamma_{\mu} C_F \psi_F + C_{aGG} \frac{\alpha_s}{8\pi} \frac{a}{f_a} G^a_{\mu\nu} \tilde{G}^{\mu\nu,a} + C_{aWW} \frac{\alpha_2}{8\pi} \frac{a}{f_a} W^A_{\mu\nu} \tilde{W}^{\mu\nu,A} + C_{aBB} \frac{\alpha_1}{8\pi} \frac{a}{f_a} B_{\mu\nu} \tilde{B}^{\mu\nu}$$

- In fact, in this case, one can eliminate the CP-violating QCD $\bar{\theta}$ -term, $\bar{\theta} \frac{\alpha_s}{8\pi} G^a_{\mu\nu} \tilde{G}^{\mu\nu,a}$, by the shift $a \to a \bar{\theta} f_a / C_{aGG}$
- Non-perturbative topological fluctuations of the gluon fields in QCD induce a potential for the shifted field whose minimum
 is at zero field value, thereby ensuring CP conservation of strong interactions
- The second derivative of the dynamically induced potential gives the axion mass. It is inversely proportional to the scale f_a and proportional to the square root of the topological susceptibility χ of QCD, which can be determined either using chiral effective field theory or lattice QCD, resulting in the prediction

$$m_a = C_{aGG} \frac{\sqrt{\chi}}{f_a} \simeq 5.7 \left(\frac{10^9 \,\text{GeV}}{f_a/C_{aGG}}\right) \,\text{meV}$$

Axion

Axion "bands"

$$\mathcal{L}_{\text{eff}} = \frac{1}{2} \left(\partial_{\mu} a \right) \left(\partial^{\mu} a \right) - \frac{1}{2} \left(C_{aGG} \frac{\sqrt{\chi}}{f_a} \right)^2 a^2 + \frac{\partial^{\mu} a}{f_a} \sum_F \bar{\psi}_F \gamma_{\mu} C_F \psi_F + \left[C_{a\gamma\gamma} - 1.92(4) C_{aGG} \right] \frac{\alpha}{8\pi} \frac{a}{f_a} F_{\mu\nu} \tilde{F}^{\mu\nu}$$

Correspondingly, axion couplings to SM grow proportional to axion mass, while their magnitude depend on the specific model-dependent coefficients of the relevant operators in the effective Lagrangian.

This gives rise to the so called axion bands in plots of coupling constant versus mass, e.g. for the coupling to electromagnetism

$$\mathcal{L}_{\text{eff}} \supset \frac{g_{a\gamma}}{4} a F_{\mu\nu} \tilde{F}^{\mu\nu} = g_{a\gamma} a \mathbf{E} \cdot \mathbf{B}$$
$$g_{a\gamma} = \frac{\alpha}{2\pi f_a} \left[C_{a\gamma\gamma} - 1.92(4) C_{aGG} \right]$$

• KSVZ model: $C_{a\gamma\gamma} = 0, C_{aGG} = 1$ [Kim 79;Shifman,Vainshtein,Zakharov 80]

• DFSZ model: $C_{a\gamma\gamma} = 16, C_{aGG} = 6$ [Zhitnitsky 80;Dine,Fischler,Srednicki 81]

DESY. | Theory of Axions and ALPs: where to find them | FH Particle Physics Discussion: Axions at LHC and ALPS II, DESY, Hamburg, June 5, 2023

Axion

Axion "bands"

Recently, there have been proposals to enlarge the axion bands by considering less minimal UV completions which result in larger values of the coefficients of specific axion-SM interactions, e.g. its electromagnetic interactions

Axion

Axion "bands"

Recently, there have been proposals to enlarge the axion bands by considering less minimal UV completions which result in larger values of the coefficients of specific axion-SM interactions, e.g. its electromagnetic interactions

Particular enhancement in electromagnetic coupling if fermion in triangle loop carries magnetic charge, i.e. it is a magnetic monopole [Sokolov, AR 21, 22, 23]

0000000

Axion "bands"

The axion bands can be alternatively changed enlarging the confining sector beyond QCD. New contributions of topologically non-trivial gauge field fluctuations give then additional contributions to the axion mass

Axion "bands"

The axion bands can be alternatively changed enlarging the confining sector beyond QCD. New contributions of topologically non-trivial gauge field fluctuations give then additional contributions to the axion mass

Examples of horizontal enlargement of the parameter space towards the

• right of the canonical axion band are heavy axion models that solve the strong CP problem at low scales (e.g. $f_a \sim \text{TeV}$)

[Rubakov, 97; Berezhiani et al. 01; Fukuda et al, 01;...]

Axion "bands"

The axion bands can be alternatively changed enlarging the confining sector beyond QCD. New contributions of topologically non-trivial gauge field fluctuations give then additional contributions to the axion mass

Examples of horizontal enlargement of the parameter space towards the

• right of the canonical axion band are heavy axion models that solve the strong CP problem at low scales (e.g. $f_a \sim \text{TeV}$)

[Rubakov, 97; Berezhiani et al. 01; Fukuda et al, 01;...]

- left of the canonical axion band is the Z_N axion model exploiting N hidden copies of the SM linked by the axion, realising a Z_N symmetry

[Hook 18; Di Luzio, Gavela, Quilez, AR 21]

Dark Matter

Mass range

• Sub-eV mass axions are excellent dark matter (DM) candidates:

Dark Matter

Mass range

Heavy axions or ALPs with too large twophoton coupling, however, cannot be the dark matter, since their lifetime,

$$\tau_{a \to \gamma \gamma} = \frac{64 \pi}{g_{a\gamma}^2 m_a^3}$$

$$= 1.3 \times 10^{16} \,\mathrm{s} \left(\frac{10^{-10} \,\mathrm{GeV}^{-1}}{g_{a\gamma}}\right)^2 \left(\frac{\mathrm{keV}}{m_a}\right)^3$$

tends to be smaller than the age of the universe

