

SEARCHES FOR LONG LIVED ALPS IN TT EVENTS

L. Rygaard, J. Niedziela, R. Schäfer, S. Bruggisser, J. Alimena, S. Westhoff, F. Blekman

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

Introduction

- axions & axion-like particles
- ALP model top scenario
- existing ALP searches at LHC

Analysis details

- MC samples
- background suppression
- categorization and signal extraction

Results

expected sensitivity with Run 2 (HL-LHC) data

Summary & outlook

AXION-LIKE PARTICLES

Axions

- original axions: Peccei-Quinn theory solving the strong CP problem,
- characteristic two-photon vertex:
 - Ight shining through the wall experiments.

Axion-Like Particles (ALPs)

- more general class of elementary pseudo-scalar particles,
- mass-coupling relation is not fixed,
- occur in many extensions of SM,
- extensive searches at DESY: ALPS II, (Baby)IAXIO, LUXE, MADMAX...
- many other collider and non-collider searches.

The top scenario of the ALP model

- a new (pseudo-)scalar is expected to have Yukawa-like couplings to SM fermions,
- if that is the case, it would couple predominantly to the top quark (light quark coupling suppressed by small masses),
- for simplicity, we assume only top couplings.

ALPS MODEL - TOP SCENARIO

The top scenario of the ALP model

- a new (pseudo-)scalar is expected to have Yukawa-like couplings to SM fermions,
- if that is the case, it would couple predominantly to the top quark (light quark coupling suppressed by small masses),
- for simplicity, we assume only top couplings.

Model parameters

Overall, just 2 free parameters in the model:

- m_a ALP mass,
- Ctt top-ALP coupling.

ALPS MODEL - TOP SCENARIO

The top scenario of the ALP model

- a new (pseudo-)scalar is expected to have Yukawa-like couplings to SM fermions,
- if that is the case, it would couple predominantly to the top quark (light quark coupling suppressed by small masses),
- for simplicity, we assume only top couplings.

Model parameters

Overall, just 2 free parameters in the model:

- m_a ALP mass,
- Ctt top-ALP coupling.

ALP decays

- **loop induced** (decay width determined by c_{tt}),
- ALPs likely to be **long-lived**,
- for $m_a < 1$ GeV predominantly to muons,
- above that other channels open (like cc̄, ττ, bb, etc.).

ALPS MODEL - TOP SCENARIO

Searching for ALPs at LHC

Using tt events:

- a natural place to look for such ALPs,
- triggering on tops & requiring $t\bar{t}$ pair \rightarrow improved sensitivity,
 - assuming 100% efficient trigger,
 - assuming 100% efficient top-tagging (recognizing muons coming from top decays).

TT+ALPS AT THE LHC

Searching for ALPs at LHC

Using tī events:

- a natural place to look for such ALPs,
- triggering on tops & requiring $t\bar{t}$ pair \rightarrow improved sensitivity,
 - assuming 100% efficient trigger,
 - assuming 100% efficient top-tagging (recognizing muons coming from top decays).

Long lifetime:

- displaced decay vertex
- easier background rejection.

TT+ALPS AT THE LHC

Searching for ALPs at LHC

Using tt events:

- a natural place to look for such ALPs,
- triggering on tops & requiring $t\bar{t}$ pair \rightarrow improved sensitivity,
 - assuming 100% efficient trigger,
 - assuming 100% efficient top-tagging (recognizing muons coming from top decays).

Long lifetime:

- displaced decay vertex
- easier background rejection.

Focus on decays to muons:

- excellent tracking,
- easy identification,
- good secondary vertex resolution.

TT+ALPS AT THE LHC

ALPS AT THE LHC

ALPs have been extensively searched for at the LHC:

- huge mass range: 0.2 to 1600 GeV,
- various final states and production mechanisms, probing various ALP couplings,
- only one (very recent) paper covering top-ALP coupling.

15-30 GeV ATLAS, PRD 102.112006, H decays

16-62 GeV ATLAS, <u>CONF-2021-009</u>, H decays

20-62 GeV CMS, PLB 2019.06.021, H decays

µ coupling τ coupling γ coupling

b coupling

q coupling

t coupling

350-1600 GeV CMS+TOTEM, EXO-18-014 15-72 GeV ATLAS, arxiv:2304.14247 * very much not to scale!

ALPS AT THE LHC

ALPs have been extensively searched for at the LHC:

- huge mass range: 0.2 to 1600 GeV,
- various final states and production mechanisms, probing various ALP couplings,
- only one (very recent) paper covering top-ALP coupling.
- ➡ this analysis:
- directly probing top-ALP coupling → well theoretically motivated,
- improved sensitivity thanks to **tt requirement**,
- interesting, uncovered signature ($t\bar{t}$ + displaced dimuon),
- accessing lower mass range.

15-30 GeV ATLAS, PRD 102.112006, H decays

16-62 GeV ATLAS, <u>CONF-2021-009</u>, H decays

20-62 GeV CMS, PLB 2019.06.021, H decays

µ coupling
τ coupling
γ coupling
q coupling
t coupling

b coupling

350-1600 GeV CMS+TOTEM, EXO-18-014 15-72 GeV ATLAS, arxiv:2304.14247 * very much not to scale!

SIGNAL & BACKGROUND SAMPLES

- setting $c_{tt}/f_a = 1.0/TeV$ for ALP signal samples,
- setting luminosity to 150 fb⁻¹ (3 ab⁻¹) for Run 2 (HL-LHC).

GROUND SUPPRES

Suppressing known resonances

Muons coming from decays of known resonances suppressed by explicit $m_{\mu\mu}$ cuts:

- considering J/Ψ and $\Psi(2S)$ mesons,
- cutting at $m_R \pm 5\% \cdot m_R$.

SACKGROUND SUPPRESSION

Suppressing known resonances

Muons coming from decays of known resonances suppressed by explicit $m_{\mu\mu}$ cuts:

- considering J/Ψ and $\Psi(2S)$ mesons,
- cutting at $m_R \pm 5\% \cdot m_R$.

DIMUONS SELECTION

Custom-made variable – R_{lxv}

- want to select pairs of muons originating from the same vertex,
- don't want to be too dependent on detector resolution (this study doesn't include detector simulation),
- proposing the following variable:

$$R_{l_{xy}} = \sqrt{\frac{(x^{\mu} - x^{\bar{\mu}})^2 + (y^{\mu} - y^{\bar{\mu}})^2}{(|x^{\mu}| + |x^{\bar{\mu}}|)^2 + (|y^{\mu}| + |y^{\bar{\mu}}|)^2}}$$

- x and y are muon vertex coordinates,
- sensitive to the difference in muons' origin,
- largely independent from detector resolution,
- selection:
 - the pair with the smallest R_{Ixy} is picked,
 - events with $R_{Ixy} < 0.05$ are kept (conservative estimate based on CMS vertex reconstruction resolution \rightarrow in reality we should be able to do better than that).

SELECTIONS SUMMARY

Pre-selection

- $p_T^{\mu} > 5$ GeV,
- $|\eta_{\mu}| < 2.5$,
- $I_{xy} > 200 \ \mu m$,
- veto muons coming from top decays,
- at least one pair of **opposite-sign** muons in the event.

Signal selection

- **known resonances**: explicit mass cuts,
- exploit p_T spectrum: $p_T^{\mu} > 10$ GeV,
- muons coming from the same vertex: $R_{Ixy} < 0.05$.

Summary

- signal efficiency close to 80% for low masses and decreasing to $\approx 7\%$ for higher masses \bullet (other decay channel important and more prompt),
- p_T , $m_{\mu\mu}$, and R_{Ixy} cuts suppress backgrounds by >5 orders of magnitude.

Signal efficiency	$m_a=0.35~{\rm GeV}$	$m_a = 0.9 { m GeV}$	$m_a = 2 \text{ GeV}$	$m_a = 8$ G
Pre-selection	$(8.92 \pm 0.01) imes 10^{-1}$	$(7.94 \pm 0.01) \times 10^{-1}$	$(6.40 \pm 0.01) \times 10^{-1}$	(7.25 ± 0.03)
$p_T^{\mu} > 10 \text{ GeV}$	$(7.99 \pm 0.01) imes 10^{-1}$	$(6.79 \pm 0.01) imes 10^{-1}$	$(5.58 \pm 0.01) imes 10^{-1}$	(6.87 ± 0.03)
$m_{\muar{\mu}} eq m_{J/\Psi}, m_{\Psi(2S)}$	$(7.99 \pm 0.01) imes 10^{-1}$	$(6.79 \pm 0.01) imes 10^{-1}$	$(5.58 \pm 0.01) imes 10^{-1}$	(6.86 ± 0.03)
$R_{lxy} < 0.05$	$(7.99 \pm 0.01) \times 10^{-1}$	$(6.79 \pm 0.01) \times 10^{-1}$	$(5.58 \pm 0.01) \times 10^{-1}$	(6.86 ± 0.03)
Events passing pre-selection	19793 ± 21	17697 ± 20	2516 ± 3	$1.66 \pm 0.$
Events passing signal selection	17740 ± 20	15116 ± 18	2193 ± 3	$1.57\pm0.$

Expected number of events for 150 fb⁻¹

Background efficiency	$tar{t}j$	$tar{t}Z^{(*)}$
Pre-selection	$(2.55 \pm 0.05) imes 10^{-4}$	(1.89 ± 0.04)
$p_T^{\mu} > 10 \text{ GeV}$	$(7.4 \pm 0.2) imes 10^{-5}$	$(9.4\pm0.3) imes$
$m_{\muar{\mu}} eq m_{J/\Psi}, m_{\Psi(2S)}$	$(6.8 \pm 0.2) imes 10^{-5}$	$(5.8 \pm 0.2) imes$
$R_{lxy} < 0.05$	$(7.1 \pm 0.8) \times 10^{-6}$	$(4.9 \pm 0.7) imes$
Events passing pre-selection	15131 ± 267	0.59 ± 0.0
Events passing signal selection	421 ± 45	0.015 ± 0.0
Events passing pre-selection Events passing signal selection	$\begin{array}{r} 15131 \pm 267 \\ 421 \pm 45 \end{array}$	$0.59 \pm 0.015 \pm 0.000$

Jeremi Niedziela

Categorization — Top scenario

Bins in I_{xy}

- bins based on an existing CMS analysis (EXO-20-014, 2112.13769), driven by beam pipe and tracker layers location.

• in order to further increase sensitivity to displaced signatures, we bin surviving events in secondary vertex displacement Ixy,

'ECTED SENSITIVITY — TOP SCENARIO

Limits — Top scenario

- we derive 95% CL upper limits on cross section times $B(a \rightarrow \mu\mu)$ as a function of m_a ,
- excellent sensitivity with Run 2 (HL-LHC) luminosity of 150 fb⁻¹ (3 ab⁻¹),
- **best** limits for **low masses** <1 GeV,

• >1 GeV limits deteriorate mainly due to other decay channels starting to dominate (but also signal becoming more prompt).

Expected Sensitivity — General Scenario

Limits — General scenario

- more general scenario: a new pseudo-scalar with arbitrary lifetime produced in tt events,
- $c\tau \ge 1$ mm: decays in calorimeters and the muon system become important,
- e.g. for signal $\sigma \times BR(a \rightarrow \mu\mu) = 1$ fb, one can probe lifetimes as high as 1-10 m (20-400 m) with Run 2 (HL-LHC) data.

Jeremi Niedziela

Expected Sensitivity -- General Scenario

Limits — General scenario

- more general scenario: a new pseudo-scalar with arbitrary lifetime produced in tt events,
- $c\tau \ge 1$ mm: decays in calorimeters and the muon system become important,
- e.g. for signal $\sigma \times BR(a \rightarrow \mu\mu) = 1$ fb, one can probe lifetimes as high as 1-10 m (20-400 m) with Run 2 (HL-LHC) data.

Jeremi Niedziela

SUMMARY & OUTLOOK

Current status

- focus on a well-motivated top scenario ALPs model,
- tt events: a natural place to search for ALPs
 - improved sensitivity,
 - uncovered signature with tt pairs and displaced dimuons,
- established selections allowing to suppress backgrounds and keep signal-like events,
- derived expected limits for the top scenario and for more general pseudo-scalars with arbitrary lifetime.

Next

- submission to a journal,
- implementing analysis in CMS and looking at the Run 2/3 data!

Expected Sensitivity - Top Scenario

