Beyond Axion Discovery:

Distinguishing Different Axion Models and Further Searches with (Baby)IAXO

Daniel Heuchel (DESY) daniel.heuchel@desy.de FH Particle Physics Pizza Seminar Hamburg, 26th June 2023

Mainly based on papers:

<u>JHEP05(2021)137</u> <u>JCAP06(2019)047</u> <u>JCAP03(2019)039</u> Eur. Phys. J. C 82, 120 (2022) Bab

HELMHOLTZ

Outline

For this Talk

- Axions/ALPs & detection strategies
- Helioscopes: IAXO & BabyIAXO
- Physics prospects beyond (Primakoff)-axion discovery:
 - Axion-electron coupling
 - Axion-nucleon coupling
 - X-ray polarisation
 - Haloscope mode and further searches
- Summary and Outlook

Axions/ALPs

and how to detect them.

Physics Motivation

Most compelling solution to the strong CP problem

Physics Motivation

Most compelling solution to the strong CP problem

Astrophysical hints: UHE γ transparency + anomalous stellar cooling, ...

Physics Motivation

Cosmology: Excellent cold dark matter candidate (Not ad hoc solution to DM)

Most compelling solution to the strong CP problem

Astrophysical hints: UHE γ transparency + anomalous stellar cooling, ...

Physics Motivation

Theory:

More generic axion-like particles (ALPs) predicted by many extensions of SM (e.g. string theory)

Cosmology: Excellent cold dark matter candidate (Not ad hoc solution to DM)

Most compelling solution to the strong CP problem

Astrophysical hints: UHE γ transparency + anomalous stellar cooling, ...

Physics Motivation

Theory:

More generic axion-like particles (ALPs) predicted by many extensions of SM (e.g. string theory)

Cosmology: Excellent cold dark matter candidate (Not ad hoc solution to DM)

Most compelling solution to the strong CP problem

Astrophysical hints: UHE γ transparency + anomalous stellar cooling, ...

Detection of Axion/ALPs

Coupling to Photons

- Properties of axions/ALPs:
 - ➡ WISP (Weakly interacting sub-eV particles), typical: m_a < 1eV
 - ➡ Pseudo-scalar
 - ⇒ Z = 0
 - ➡ Minimal interaction with SM constituents
 - ➡ Axion/ALP photon mixing in magnetic fields

Detection of Axion/ALPs

Coupling to Photons

- Properties of axions/ALPs:
 - ➡ WISP (Weakly interacting sub-eV particles), typical: (m_a)< 1eV
 - ➡ Pseudo-scalar
 - ⇒ Z = 0
 - ➡ Minimal interaction with SM constituents
 - ➡ Axion/ALP photon mixing in magnetic fields

- Yellow band: traditional QCD axion benchmarks
 - ➡ DFSZ (Dine, Fischler, Srednicki, Zhitniskii) axions couple to fermions
 - ➡ KSVZ (Kim, Shifman, Vainshtein, Zakharov) axions couple to BSM quarks only

- Yellow band: traditional QCD axion benchmarks
 - ➡ DFSZ (Dine, Fischler, Srednicki, Zhitniskii) axions couple to fermions
 - ➡ KSVZ (Kim, Shifman, Vainshtein, Zakharov) axions couple to BSM quarks only
- Astrophysical hints: 10^{-12} GeV⁻¹ < $g_{a\gamma\gamma}$ < 10^{-10} GeV⁻¹

- Yellow band: traditional QCD axion benchmarks
 - ➡ DFSZ (Dine, Fischler, Srednicki, Zhitniskii) axions couple to fermions
 - ➡ KSVZ (Kim, Shifman, Vainshtein, Zakharov) axions couple to BSM quarks only
- Astrophysical hints: 10^{-12} GeV⁻¹ < $g_{a\gamma\gamma}$ < 10^{-10} GeV⁻¹
- Outside the yellow band: typically ALPs models
 But: recently more QCD axion models outside the band e.g. recent benchmark: photophilic hadronic axion from heavy magn. monopoles

DESY. | (Baby)IAXO: Distinguishing Axion Models & Further Searches | Daniel Heuchel | FH Particle Physics Pizza Seminar | 26.06.2023 |

The Parameter Landscape

- Yellow band: traditional QCD axion benchmarks
 - ➡ DFSZ (Dine, Fischler, Srednicki, Zhitniskii) axions couple to fermions
 - ➡ KSVZ (Kim, Shifman, Vainshtein, Zakharov) axions couple to BSM quarks only
- Astrophysical hints: 10⁻¹² GeV⁻¹ < $g_{a\gamma\gamma}$ < 10⁻¹⁰ GeV⁻¹
- Outside the yellow band: typically ALPs models
 - But: recently more QCD axion models outside the band e.g. recent benchmark: photophilic hadronic axion from heavy magn. monopoles

- Yellow band: traditional QCD axion benchmarks
 - ➡ DFSZ (Dine, Fischler, Srednicki, Zhitniskii) axions couple to fermions
 - ➡ KSVZ (Kim, Shifman, Vainshtein, Zakharov) axions couple to BSM quarks only
- Astrophysical hints: 10⁻¹² GeV⁻¹ < $g_{a\gamma\gamma}$ < 10⁻¹⁰ GeV⁻¹
- Outside the yellow band: typically ALPs models
 But: recently more QCD axion models outside the band e.g. recent benchmark: photophilic hadronic axion from heavy magn. monopoles
- Reachable parameter space! Very interesting times for different types of axion experiments!

The Current Parameter Landscape

https://cajohare.github.io/ AxionLimits/docs/ap.html

Experimental Exclusion Limits

The Current Parameter Landscape

https://cajohare.github.io/ AxionLimits/docs/ap.html

Experimental Exclusion Limits + Projections

Experimental Approaches

Complementarity & Model Dependencies

Concept

Source

Detection

Model & Cosmology Dependency

High: axions cold dark matter constituents -> "monochromatic" microwave

Experiments

ADMX, CAST-CAPP, CASPEr, RADES, MADMAX,...

Experimental Approaches

Complementarity & Model Dependencies

Concept Detection **Experiments** Source Model & Cosmology Dependency High: axions cold dark ADMX, CAST-CAPP, matter constituents CASPEr, RADES, Haloscopes MADMAX,.... -> "monochromatic" **Relic** axions DESY. microwave Model independent: OSQAR, CROWS, Ym Light-shiningа "self-made" axions ALPS, **ALPS II**,... through-walls -> monochromatic experiments DESY. microwave/optical Lab axions ХВ。 B_o×

ALPS II - End of May 2023: Start of First Science Run

Just one Extra Slide...

Forschung - Hamburg

Mit Licht durch die Wand: Desy forscht zu Dunkler Materie

23. Mai 2023, 12:10 Uhr | Lesezeit: 1 min

Ein Mitarbeiter des Deutschen Elektronen-Synchrotrons (DESY) fährt am Instrument ALPS II entlang. Foto: Ulrich Perrey/dpa/Archivbild (Foto: dpa)

Link to ALPS II video Link to drone flight video

Experimental Approaches

Complementarity & Model Dependencies

Detection Concept Source Model & Cosmology Dependency High: axions cold dark matter constituents Haloscopes -> "monochromatic" **Relic** axions microwave Model independent: Light-shining-"self-made" axions а through-walls -> monochromatic **experiments** microwave/optical Lab axions B_o× ́ХВ。 Low: but depending on production channel and solar model **Helioscopes** -> X-rays (relativistic axions!), non-Solar axions ×в, monochromatic

Experiments

ADMX, CAST-CAPP, CASPEr, RADES, MADMAX,...

OSQAR, CROWS, ALPS, **ALPS**, **II**,...

DESY.

SUMICO, CAST, (Baby)IAXO

Helioscopes The sunny side of life with (Baby)IAXO.

https://www.stern.de/kultur/tv/-teletubbies---so-sieht das-baby-auf-der-sonne-heute-aus-32610940.html

Production Mechanisms

Solar Axions

Production Mechanisms

1. "Classical" Primakoff axions from solar plasma photons 8_{ayy} ➡ Generic prediction of most axion models $\sim \sim$ ➡ Axion energy: thermal spectrum of sun a e, a а Primakoff **Our Sun**

1. "Classical" Primakoff axions from solar **Solar Axions** plasma photons $g_{a\gamma\gamma}$ **Production Mechanisms** ➡ Generic prediction of most axion models $\gamma \sim \gamma$ ➡ Axion energy: thermal spectrum of sun a eа а Primakoff Differential axion flux at earth Primakoff conversion Ne/Fe 3.5Electron processes $[10^{20} \text{ keV}^{-1} \text{ year}^{-1} \text{ m}^{-2}]$ 0 Mg--- Redondo 2013 Phys. Rev. D 100, 123020 3.0**Our Sun** 2.5**x50** 2.01.51.0Fe $\frac{\Phi p}{p} \frac{3}{0.5}$ 0.0

0

2

6

[keV]

 ω

10

8

1. "Classical" Primakoff axions from solar **Solar Axions** plasma photons Sayy **Production Mechanisms** ➡ Generic prediction of most axion models \sim ➡ Axion energy: thermal spectrum of sun 3. Solar axions from axionа nucleon coupling g_{an} Primakoff ➡ Model dependent Fusion processes and а Differential axion flux at earth nuclear transitions, e.g. 25 most promising: ⁵⁷Fe Axion flux. $\mathrm{d}\Phi_{\mathrm{a}}\,/\mathrm{d}\omega_{\mathrm{a}}\,[10^{10}\,\mathrm{cm^{-2}}\,\mathrm{keV^{-1}}\,\mathrm{s^{-1}}]$ 20 ➡ Monochromatic lines: e.g. 20 LP 14.4 keV (57Fe) **Our Sun** 10 15 4. Other mechanisms: 2.5 5 7.5 10 Photon-axion conversion 10 ABC in macroscopic B-field Plasmon-axion conversion ⁵⁷Fe Primakoff Phys. Rev. D 102, 123024 5 Phys. Rev. D 101, 123004 TP а axio – deexcitation 10 *g*_{ae} 0.01 0.1 100 Axion energy. ω_{a} [keV] 2. "ABC" solar axions from axion-electron coupling universe8010037 ➡ Model dependent ➡ Axion energy: continuous spectrum + elemental peaks e - I bremsstrahlung Compton

Helioscopes

Sun

Basic Components, Detection Principle and Figure of Merit

Credit: Tobias Schiffer, Uni. Bonn

Helioscopes

Basic Components, Detection Principle and Figure of Merit

- Structure & drive system: precise and long sun tracking capability
- **Magnet**: large volume and high field strength

•

- X-ray optics: small focal spot and high throughput
- X-ray detectors: high efficiency and low background

Helioscopes

Basic Components, Detection Principle and Figure of Merit

- Structure & drive system: precise and ٠ long sun tracking capability
- **Magnet**: large volume and high field strength
- X-ray optics: small focal spot and high throughput
- **X-ray detectors**: high efficiency and low background

Sensitivity figure of merit:

detectors

magnet

CERN Solar Axion Telescope (CAST)

State-of-the-art Helioscope

- Sunrise & sunset system: sun tracking for 2 x 1.5 hours / day
- LHC magnet: ~9 T, ~10 m long and two 4.2 cm diameter bores: $B^2 L^2 A = ~21 T^2 m^4$
- First helioscope using X-ray focusing and low background techniques
- Data taking ended 2021 after 20 years of fruitful operation

CERN Solar Axion Telescope (CAST)

State-of-the-art Helioscope

- Sunrise & sunset system: sun tracking for 2 x 1.5 hours / day
- LHC magnet: ~9 T, ~10 m long and two 4.2 cm diameter bores: $B^2 L^2 A = ~21 T^2 m^4$
- First helioscope using X-ray focusing and low background techniques
- Data taking ended 2021 after 20 years of fruitful operation
 - → Still state-of-the-art limits on $g_{a\gamma\gamma}$ vs. m_a and other parameter space
 - Last years of experiment: IAXO pathfinder phase

International AXion Observatory (IAXO)

The Next Generation Axion Helioscope

- 12 hours solar tracking per day
- 20 m superconducting purpose built large scale magnet,
 2-3 T, 8 bores (d = 60 cm each)
 - → B² L² A = ~6200 T² m⁴ (300x CAST)
- X-ray optics with ~0.2 cm² focal planes
- 8 detection lines
 - Complementary detector technologies optimised for different measurements
 - ➡ 4+ orders of magnitude better SNR than CAST

<u> JINST 9 T05002</u>

International AXion Observatory (IAXO)

The Next Generation Axion Helioscope

- 12 hours solar tracking per day
- 20 m superconducting purpose built large scale magnet,
 2-3 T, 8 bores (d = 60 cm each)
 - → B² L² A = ~6200 T² m⁴ (300x CAST)
- X-ray optics with ~0.2 cm² focal planes
- 8 detection lines
 - Complementary detector technologies optimised for different measurements
 - ➡ 4+ orders of magnitude better SNR than CAST

But indeed not a Baby...

New life arises in HERA hall south!

But indeed not a Baby...

But indeed not a Baby...

- Prototype for all IAXO sub-systems
- Fully-fledged helioscope that will study new parameter space and deliver important physics results

But indeed not a Baby...

- Prototype for all IAXO sub-systems
- Fully-fledged helioscope that will study new parameter space and deliver important physics results
- 12 hours solar tracking per day
- 10 m superconducting purpose built large scale magnet, 2-3 T, 2 bores (d = 70 cm each)
 - → $B^2 L^2 A = ~325 T^2 m^4$ (>10x CAST)
- X-ray optics with ~0.2 cm² focal planes
- 2 detection lines
 - Complementary detector technologies optimised for different measurements
 - ➡ 2 orders of magnitude better SNR than CAST

Discovery Technologies

- Requirements: High detection efficiency (1-10 keV) and ultra-low background levels
- Baseline option: Micromegas (Micro-Mesh) TPC

Discovery Technologies

- Requirements: High detection efficiency (1-10 keV) and ultra-low background levels
- Baseline option: Micromegas (Micro-Mesh) TPC + shielding + veto systems

Discovery Technologies

- Requirements: High detection efficiency (1-10 keV) and ultra-low background levels
- Baseline option: Micromegas (Micro-Mesh) TPC + shielding + veto systems
- Proven design (CAST) & extensive R&D:
 - ➡ 60-70% detection efficiency
 - Demonstrated BKG-level of
 < 10⁻⁶ counts keV⁻¹ cm⁻² s⁻¹ (32 photons per year)
 Goal: ~1 photon keV⁻¹ cm⁻² year⁻¹
 - ➡ Spatial resolution: ~100µm
 - ➡ Energy resolution: ~10% (FWHM, 5.9 keV ⁵⁷Fe)

Post Discovery Technologies

GridPix (U. Bonn)

- Better energy resolution: few eV 100 eV
- Lower energy threshold: $\sim 0.1 \text{ keV}$
- Very active R&D ongoing: designs, materials, readout

CUBE ASIC preamplifier

MMC: Metallic Magnetic Calorimeters (U. Heidelberg)

Keep in mind!

TES: Transition Edge Sensors (DESY/UHH + INMA-ICMAB CSIC)

DESY. | (Baby)IAXO: Distinguishing Axion Models & Further Searches | Daniel Heuchel | FH Particle Physics Pizza Seminar | 26.06.2023 |

In-Situ Background Measurements

And Detector System Integration

- Goal BKG level: ~1 photon keV⁻¹ cm⁻² year⁻¹
- ➡ Extensive background measurement campaigns at individual detector level
 - ➡ Extrinsics (cosmics, radioactivity) vs. Intrinsics (internal radioactivity)

In-Situ Background Measurements

And Detector System Integration

- Goal BKG level: ~1 photon keV⁻¹ cm⁻² year⁻¹
- ➡ Extensive background measurement campaigns at individual detector level
 - ➡ Extrinsics (cosmics, radioactivity) vs. Intrinsics (internal radioactivity)

- In-situ background measurement campaigns in HERA hall south with small scale and prototype IAXO detectors
 - ➡ Characterise local background sources and levels
 - Full system level integration of detectors and BabyIAXO components for potential "dry runs" without magnet

In-Situ Background Measurements

And Detector System Integration

- Goal BKG level: ~1 photon keV⁻¹ cm⁻² year⁻¹
- Extensive background measurement campaigns at individual detector level
 - Extrinsics (cosmics, radioactivity) vs. Intrinsics (internal radioactivity)

- ➡ In-situ background measurement campaigns in HERA hall south with small scale and prototype IAXO detectors
 - Characterise local background sources and levels
 - ➡ Full system level integration of detectors and BabyIAXO components for potential "dry runs" without magnet

HERA Hall South, Hamburg

Ν

μ

Background Simulation Campaigns

Distinguishing Signals and Background

- Extensive MC Geant4 simulation campaigns with REST for different detector technologies and backgrounds
 - Characterise and quantify response by different backgrounds e.g. BKG induced by cosmic neutrons

Studies are powered by REST-for-Physics (Rare Event Searches Toolkit) Framework for data analysis and Geant4 MonteCarlo simulation.

https://github.com/ rest-for-physics

Background Simulation Campaigns

Distinguishing Signals and Background

- Extensive MC Geant4 simulation campaigns with REST for different detector technologies and backgrounds
 - Characterise and quantify response by different backgrounds e.g. BKG induced by cosmic neutrons
 - More generic studies: distinguish BKG from signal events by topology, signal shape, timing,...
 - ➡ Machine learning algorithms

Studies are powered by REST-for-Physics (Rare Event Searches Toolkit) Framework for data analysis and Geant4 MonteCarlo simulation.

https://github.com/ rest-for-physics

Primakoff-Axion Discovery:

Exploring the Axion-Photon Coupling.

Physics Prospects of (Baby)IAXO

Baseline (Primakoff-)Axion-Photon Coupling

- BabyIAXO will probe large generic unexplored ALPs parameter space:
 - → Low masses: $g_{a\gamma\gamma}$ ~ few 10^{-11} GeV⁻¹
 - Hints from astrophysics and cosmologically interesting regions
 - ➡ Vanilla QCD axion models (meV eV)

Physics Prospects of (Baby)IAXO

Baseline (Primakoff-)Axion-Photon Coupling

- BabyIAXO will probe large generic unexplored ALPs parameter space:
 - → Low masses: $g_{a\gamma\gamma}$ ~ few 10^{-11} GeV⁻¹
 - Hints from astrophysics and cosmologically interesting regions
 - ➡ Vanilla QCD axion models (meV eV)
- Independent of axion = DM hypothesis
- Synergy with ALPS II: $g_{a\gamma\gamma}$ would provide total solar (Primakoff-)axion flux
- IAXO(+) will dig deeper in parameter space

Physics Prospects of (Baby)IAXO

Baseline (Primakoff-)Axion-Photon Coupling

- BabyIAXO will probe large generic unexplored
 ALPs parameter space:
 - → Low masses: $g_{a\gamma\gamma}$ ~ few 10^{-11} GeV⁻¹
 - Hints from astrophysics and cosmologically interesting regions
 - ➡ Vanilla QCD axion models (meV eV)
- Independent of axion = DM hypothesis
- Synergy with ALPS II: $g_{a\gamma\gamma}$ would provide total solar (Primakoff-)axion flux
- IAXO(+) will dig deeper in parameter space

Coherence Gas Buffer Technique

Pushing the Sensitivity to high Axion Masses

"Massless" case m_a < 20 meV

 $P_{a \to \gamma} = \frac{g_{a\gamma}^2 B^2 L^2}{4}$

Constant

Finite mass case m_a > 20 meV (IAXO)

$$P_{a \to \gamma} = \frac{g_{a\gamma}^2 B^2 L^2}{4} \times \frac{2(1 - \cos(qL))}{(qL)^2}$$

Oscillates and rapidly drops with axion mass and L of conversion volume (Decoherence of axion and photon field) Transfered momentum $q=rac{1}{2\omega}(m_a^2-m_\gamma^2)$,

Coherence Gas Buffer Technique

Pushing the Sensitivity to high Axion Masses

"Massless" case m_a < 20 meV

 $P_{a \to \gamma} = \frac{g_{a\gamma}^2 B^2 L^2}{4}$

Finite mass case $m_a > 20 \text{ meV}$ (IAXO)

$$P_{a \to \gamma} = \frac{g_{a\gamma}^2 B^2 L^2}{4} \times \frac{2(1 - \cos(qL))}{(qL)^2}$$

Constant

Oscillates and rapidly drops with axion mass and L of conversion volume (Decoherence of axion and photon field) Transfered momentum $q=rac{1}{2\omega}(m_a^2-m_\gamma^2)$

- Counter-act: Introduce a buffer gas in the magnetic bores
 - → Introducing n and therefore a change in m_{γ}
 - → Tune gas type & pressure: effective coherent conversion again for a specific m_a

Coherence Gas Buffer Technique

Pushing the Sensitivity to high Axion Masses

"Massless" case m_a < 20 meV

 $P_{a \to \gamma} = \frac{g_{a\gamma}^2 B^2 L^2}{4}$

Finite mass case $m_a > 20$ meV (IAXO)

$$P_{a \to \gamma} = \frac{g_{a\gamma}^2 B^2 L^2}{4} \times \frac{2(1 - \cos(qL))}{(qL)^2}$$

Constant

Oscillates and rapidly drops with axion mass and L of conversion volume (Decoherence of axion and photon field) Transfered momentum $q=rac{1}{2\omega}(m_a^2-m_\gamma^2)$

- Counter-act: Introduce a buffer gas in the magnetic bores
 - → Introducing n and therefore a change in m_{γ}
 - → Tune gas type & pressure: effective coherent conversion again for a specific m_a
- Scan with different pressure settings: extend m_a reach with high sensitivity to $g_{a\gamma\gamma}$
 - ➡ Successfully demonstrated in CAST and to be used in (Baby)IAXO as well
 - Limit: Condensation of gas in bore and X-ray absorption

DESY. | (Baby)IAXO: Distinguishing Axion Models & Further Searches | Daniel Heuchel | FH Particle Physics Pizza Seminar | 26.06.2023 |

Beyond Axion Discovery I:

Axion-Electron Coupling.

Distinguishing Axion Models with $g_{a\gamma\gamma}$ **and** g_{ae} **Basic Idea and Strategy**

Main idea: measured axion spectrum contains axions from axion-photon and axion-electron coupling within the Sun

Depending on the shape of the spectrum one can determine $g_{a \gamma \gamma}$ and $g_{a e}$ individually in a specific range

Differential axion flux at earth (no helioscope)

JCAP03(2019)039

Distinguishing Axion Models with $g_{a\gamma\gamma}$ **and** g_{ae} Basic Idea and Strategy

Main idea: measured axion spectrum contains axions from axion-photon and axion-electron coupling within the Sun

- Depending on the shape of the spectrum one can determine $g_{a\gamma\gamma}$ and g_{ae} individually in a specific range
 - → Higher g_{ae} softens the spectrum
 - → Higher g_{ae} pronounces atomic transition peaks
- → For a large range the measurement of m_a is possible due to helioscope techniques

Differential axion flux at earth (no helioscope) $\mathbf{5}$ Total flux Primakoff conversion -2Electron processes ⁻¹ m⁻ 4 Example for: year $g_{a\gamma\gamma} = 10^{-11} \, \text{GeV}^{-1}$ 3 $[10^{20} \text{ keV}^{-1}]$ g_{ae} = 10⁻¹³ GeV⁻¹ $\mathbf{2}$ $\frac{d\Phi}{d\omega}$ 0 $\mathbf{2}$ 10[keV] ω

JCAP03(2019)039

Simulation and Analysis Strategy

JCAP03(2019)039

Overview

Measured energy spectrum of photons in helioscope:

DESY. | (Baby)IAXO: Distinguishing Axion Models & Further Searches | Daniel Heuchel | FH Particle Physics Pizza Seminar | 26.06.2023 |

Simulation and Analysis Strategy

JCAP03(2019)039

Overview

Measured energy spectrum of photons in helioscope:

- Use Poisson statistics to simulate a binned signal for IAXO
 - Inputs I: numerical values from solar axion spectrum and helioscope parameters
 - → Inputs II: g_{ae} between 10⁻¹⁵ 10⁻¹⁰ GeV⁻¹ and adapt $g_{a\gamma\gamma}$ to keep the same number of events
- Recover the two couplings by using a maximum likelihood method (likelihood-ratio test)
 - → For each value 95% certainty interval for g_{ae} calculated
 - Couplings defined as resolved if relative error on g_{ae} < 10%

Results: Massless Case + Baseline IAXO

JCAP03(2019)039

Coherent Axion-Photon Conversion

- Large new parameter space
 beyond CAST limits accessible
- Large parameter space in DSFZ
 models accessible
 - Example, other models could be confronted as well with model-independent analysis
- Best fit for stellar hints accessible with 1 keV energy resolution (red) of IAXO detectors

Results: Massless Case + Optimised IAXO

JCAP03(2019)039

Coherent Axion-Photon Conversion

- Detector technologies with lower energy thresholds help to increase sensitivity
 - More sensible to softer X-rays from electron processes
- Increased energy resolution is also expected to improve sensitivity limits
 - Soft vs. harder X-rays and resolving peaks?
- ➡ IAXO SDD, MMC, TES, Gridpix!

Results: Massive Case

JCAP03(2019)039

Increasing Decoherence in Axion-Photon Conversion

- If finite axion mass: decoherence effect
 - ➡ Gas buffer technique to counteract
 - ➡ Allows to measure m_a in addition for specific ranges!
 - → But: photon absorption: lower number of events and therefore sensitivity to individual couplings

JCAP03(2019)039

Results: Massive Case

Increasing Decoherence in Axion-Photon Conversion

- If finite axion mass: decoherence effect
 - ➡ Gas buffer technique to counteract
 - → Allows to measure m_a in addition for specific ranges!
 - ➡ But: photon absorption: lower number of events and therefore sensitivity to individual couplings

#	m_a	Detection	m_a resolved	$(g_{a\gamma}, g_{ae})$ resolved	Method	
0	$\lesssim 2{ m meV}$	1	×	 ✓ 	vacuum only	
1	\sim (2–5) meV	1	√	✓	on/off resonance	Example for:
2	\sim (5–20) meV	1	√	✓	vacuum only	$g_{a\gamma\gamma} = 10^{-11} \text{GeV}^{-2}$
3	\sim (20–200) meV	1	√	✓	scanning m_γ	$g_{ae} = 10^{-13} \mathrm{GeV^{-1}}$
4	\sim (0.2–1) eV	1	√	×	scanning m_γ	
5	$\gtrsim 1 \text{eV}$	×	×	×	-	

→ For a broad range of $g_{a\gamma\gamma}$, g_{ae} and m_a : individual measurements possible! Info about axion model!

Beyond Axion Discovery II:

Axion-Nucleon Coupling.

Solar Axions from Nuclear Processes

Eur. Phys. J. C 82, 120 (2022)

Model Dependencies and Fluxes

- If axions couple to nucleons, production in nuclear processes within the Sun (fusion, nuclear transitions)
- Flux dependent on solar model (T_{core}, isotope abundance, lifetimes of excited states, occupation numbers,...)

Solar Axions from Nuclear Processes

Eur. Phys. J. C 82, 120 (2022)

Model Dependencies and Fluxes

- If axions couple to nucleons, production in nuclear processes within the Sun (fusion, nuclear transitions)
- Flux dependent on solar model (T_{core}, isotope abundance, lifetimes of excited states, occupation numbers,...)
 - ➡ Most promising candidate: M1 transition of ⁵⁷Fe at 14.4 keV

	⁵⁷ Fe	⁸³ Kr	¹⁶⁹ Tm	¹⁸⁷ Os	²⁰¹ Hg
<i>E</i> * [keV]	14.4	9.4	8.4	9.7	1.6
J_0	1/2	9/2	1/2	1/2	3/2
J_1	3/2	7/2	3/2	3/2	1/2
τ_0 [ns]	141	212	5.9	3.4	144
α	8.56	17.09	285	264	47,000
ϵ	$10^{-4.5}$	$10^{-8.75}$	$10^{-11.9}$	$10^{-10.6}$	$10^{-10.83}$
a [%]	2.14	11.55	100	1.6	13.2
$\mathcal{N}_a(r=0)$	1	1.8×10^{-3}	1.3×10^{-4}	3.0×10^{-5}	1.9×10^{-6}
[relative to ⁵⁷ Fe]					

Solar Axions from Nuclear Processes Model Dependencies and Fluxes

- If axions couple to nucleons, production in nuclear processes within the Sun (fusion, nuclear transitions)
- Flux dependent on solar model (T_{core}, isotope abundance, lifetimes of excited states, occupation numbers,...)
 - ➡ Most promising candidate: M1 transition of ⁵⁷Fe at 14.4 keV
 - ➡ Monochromatic: natural line width << Doppler broadening (~2 eV)</p>
- Flux dependent on axion model $g_{aN} (g_{aN}^{eff} = 0.16g_{ap} + 1.16g_{an} \text{ for } {}^{57}\text{Fe})$ • $\frac{\Gamma_a}{\Gamma_{\gamma}} = 2.32(g_{aN}^{eff})^2$. Example: $\frac{\Gamma_a}{\Gamma_{\gamma}}\Big|_{\text{KSVZ}} = 5.81 \times 10^{-16} \left(\frac{m_a}{1 \text{ eV}}\right)^2$

<u>Eur. Phys. J. C 82, 120 (2022)</u>

Solar Axions from Nuclear Processes Model Dependencies and Fluxes

- If axions couple to nucleons, production in nuclear processes within the Sun (fusion, nuclear transitions)
- Flux dependent on solar model (T_{core}, isotope abundance, lifetimes of excited states, occupation numbers,...)
 - ➡ Most promising candidate: M1 transition of ⁵⁷Fe at 14.4 keV
 - ➡ Monochromatic: natural line width << Doppler broadening (~2 eV)</p>
- Flux dependent on axion model $g_{aN} (g_{aN}^{eff} = 0.16g_{ap} + 1.16g_{an} \text{ for } {}^{57}\text{Fe})$ $\Rightarrow \frac{\Gamma_a}{\Gamma_{\gamma}} = 2.32(g_{aN}^{eff})^2$. Example: $\frac{\Gamma_a}{\Gamma_{\gamma}}\Big|_{\text{KSVZ}} = 5.81 \times 10^{-16} \left(\frac{m_a}{1 \text{ eV}}\right)^2$

• Fixing a solar model (B16-AGSS09) and calculating the monochromatic solar axion flux of ⁵⁷Fe:

→
$$\Phi_a = 5.06 \times 10^{23} (g_{aN}^{\text{eff}})^2 \text{ cm}^{-2} \text{s}^{-1}$$

Solar Axions from Nuclear Processes

Model Dependencies and Fluxes

Eur. Phys. J. C 82, 120 (2022)

Sensitivity Estimates and Backgrounds

Eur. Phys. J. C 82, 120 (2022)

How to Optimise Sensitivity

- Two type of background in signal bin (14.4 keV) expected:
 - ➡ Conventional backgrounds: cosmics, radioactivity
 - ➡ Primakoff photons
Sensitivity Estimates and Backgrounds

Eur. Phys. J. C 82, 120 (2022)

How to Optimise Sensitivity

- Two type of background in signal bin (14.4 keV) expected:
 - ➡ Conventional backgrounds: cosmics, radioactivity
 - Primakoff photons

Studied Experimental Setups

Optimised for 14.4 keV photons

Label	BabyIAXO				IAXO		IAXO+		
	Baseline BabyIAXO ₀	No optics BabyIAXO ₁	Optimized optics BabyIAXO ₂	High energy resolution BabyIAXO ₃	Low background IAXO _b	High energy d resolution IAXO _r	Low background IAXO ⁺	High energy resolution IAXO ⁺	
No optics magnetic Micromeg (high pres	, full coverage of bore with a gas gas detectors ssure Xenon)	f S	Optimised optics and Cadmium-Zinc-Telluride semiconductor detector (Optimised to ~14.4 keV)			IAXO _b ⁽⁺⁾ : benchmark configuration parameters + fully optimised optics IAXO _r ⁽⁺⁾ : benchmark configuration parameters + fully optimised optics +			
Optimised optics (14.4 keV) and SDD						per-mille level energy resolving detectors (MMCs)			

Eur. Phys. J. C 82, 120 (2022)

Analysis Strategy Determining Sensitivity Limits for g_{aN}^{eff} vs. $g_{a\gamma\gamma}$

Expected number of signal events:
$$\mu_{
m signal}=\Phi_a\;P_{a
ightarrow\gamma}\;A\;t\;\epsilon_o\;\epsilon_d~~\propto(g_{a\gamma}g_{aN}^{
m eff})^2$$

Expected number of background events:
$$\mu_{\text{back}} \simeq \left(g_{a\gamma}^4 \kappa \epsilon_o \epsilon_d + ba\right) \Delta E_d t$$

Eur. Phys. J. C 82, 120 (2022)

Analysis Strategy Determining Sensitivity Limits for g_{aN}^{eff} vs. g_{ayy}

Expected number of signal events:
$$\mu_{
m signal}=\Phi_a\;P_{a
ightarrow\gamma}\;A\;t\;\epsilon_o\;\epsilon_d~~\propto(g_{a\gamma}g_{aN}^{
m eff})^2$$

Expected number of background events:
$$\mu_{
m back} \simeq \left(g_{a\gamma}^4 \kappa \epsilon_o \epsilon_d + ba\right) \Delta E_d t$$

- Scan all combinations of $g_{a\gamma\gamma}$ and g_{aN}^{eff} and calculate $\mu = \mu_{signal} + \mu_{back}$
 - Assume Poisson distribution of counts in signal bin and calculate expectation value of p (only background hypothesis)
 - → If < 0.05 (2 sigma anomaly) sensitivity to $g_{a\gamma\gamma}$ and g_{aN}^{eff} is claimed

Results: Massless Axion

Coherent Axion-Photon Conversion

- BabyIAXO will probe new parameter space beyond solar and CAST bounds
 - ➡ Optimised optic pays off
- Probing of DFSZ and M1 models in principle possible with gas buffer technique
- If axions have couplings above green dashed line: individual extraction of $g_{a\gamma\gamma}$ and $g_{aN}^{e\!f\!f}$ might be possible for BabyIAXO
- If axions have couplings below green line, axions from ⁵⁷Fe might be detected before Primakoff axions

Results: Massive Case

Increasing Decoherence in Axion-Photon Conversion

- Worst case scenario shown here: no gas buffer technique at all, so increasing decoherence with increasing m_a
- No Primakoff background in signal bin, same statistical analysis as before
- Still BabyIAXO will reach new parameter space and might see axions described by nucleophilic models
- IAXO and IAXO+ will dig deeper in parameter space

Beyond Axion Discovery III:

X-Ray Polarisation.

Pseudo-scalar vs. Scalar

And the Polarisation of Converted Photons

Pseudo-scalar Scalar 0⁻ 0⁺

Effective Lagrangian density of interaction with an electromagnetic field
$$F_{\mu\nu}$$
:
 $\mathcal{L}_{int} = -\frac{1}{4}g_{A\gamma\gamma} \mathcal{A} F_{\mu\nu}\widetilde{F}^{\mu\nu} = g_{A\gamma\gamma} \mathcal{A} \vec{E} \cdot \vec{B} \qquad \qquad \mathcal{L}_{int} = -\frac{1}{4}g_{A\gamma\gamma} \mathcal{A} F_{\mu\nu}F^{\mu\nu} = g_{A\gamma\gamma} \mathcal{A} \frac{1}{2}(\vec{E}^2 - \vec{B}^2)$

Polarisation mode of linearly polarised photons after conversion in transversal magnetic field B_{ext} :

$$E_{\gamma} \parallel B_{ext}$$
 (p-polarisation) $E_{\gamma} \perp B_{ext}$ (s-polarisation)

Pseudo-scalar vs. Scalar

And the Polarisation of Converted Photons

Pseudo-scalar Scalar 0⁻ 0⁺

Effective Lagrangian density of interaction with an electromagnetic field
$$F_{\mu\nu}$$
:
 $\mathcal{L}_{int} = -\frac{1}{4}g_{A\gamma\gamma} \mathcal{A} F_{\mu\nu}\tilde{F}^{\mu\nu} = g_{A\gamma\gamma} \mathcal{A} \vec{E} \cdot \vec{B} \qquad \qquad \mathcal{L}_{int} = -\frac{1}{4}g_{A\gamma\gamma} \mathcal{A} F_{\mu\nu}F^{\mu\nu} = g_{A\gamma\gamma} \mathcal{A} \frac{1}{2}(\vec{E}^2 - \vec{B}^2)$

Polarisation mode of linearly polarised photons after conversion in transversal magnetic field B_{ext} :

- $E_{\gamma} \parallel B_{ext}$ (p-polarisation) $E_{\gamma} \perp B_{ext}$ (s-polarisation)
- → ALPS II: depending on the polarisation of the laser, pseudo-scalar or scalar conversion mode
- \Rightarrow (Baby)IAXO: measuring the X-ray polarisation with respect to B_{ext} pseudo-scalar or scalar?

How to Measure X-Ray Polarisation

In a IAXO Gas-Based Detector

- Idea and concept actively developed in astrophysics and photoemission spectroscopy: polarisation measurement of X-rays by photoelectron emission angle
 - Depending on the X-ray polarisation the angle spectrum of the emitted photoelectron changes

How to Measure X-Ray Polarisation

In a IAXO Gas-Based Detector

- Idea and concept actively developed in astrophysics and photoemission spectroscopy: polarisation measurement of X-rays by photoelectron emission angle
 - Depending on the X-ray polarisation the angle spectrum of the emitted photoelectron changes
- Currently conceiving a study for sensitivity in BabyIAXO
 - ➡ Impact by energy of X-rays (1-10 keV)?
 - Optimal detector volume, gas type and pressure?
 - Required readout granularity to resolve direction of photoelectron track? Gridpix?
 - ➡ How many X-rays (axions/ALPS) required?
 - May machine learning algorithms help?

Beyond Axion Discovery IV:

Haloscope Mode.

Haloscopes

Detecting Dark Matter Axions - In a Nutshell

- Assumption for haloscope: DM halo is mostly made of axions
 - Axions non-relativistic: $m_a \rightarrow f_{a,\gamma}$
- Resonant "Sikivie" cavities
 - Axion-photon conversion in tunable resonant cavity
 - Typically in frequency ranges of microwaves
- If cavity is tuned to axion frequency: Boost of conversion by resonant factor
 - ➡ Excess in measured output power P_s

RADES

Helioscope as Haloscope Project

- During late years in the CAST experiment the RADES project emerged
 - Reuse the magnetic volumes of helioscope for haloscope searches by integrating resonant cavity

- Single frequency point measurement at 37 µeV in the CAST experiment
- Developments continued after CAST times
 - Optimising geometries of cavities
 - Improving coating for improving boost factor, etc.

BabyIAXO - Preliminary Projected Sensitivities

Haloscope Mode

- Use 4 x 5m long cavities in the BabyIAXO magnetic bores
 - May enable sensitivity to 1-2 µeV
 DM axions close to ADMX limits
 - Within 2 years of data taking reaching the KSVZ band
- Further implementations actively being discussed by collaboration

*Haloscope bounds shown assume axion to be 100% of DM. In general, scale as $\sqrt{\rho_{\rm DM}/\rho_a}$

Beyond Axion Discovery V:

High Frequency Gravitational Waves and Other Searches.

https://www.wired.com/story/is-dark-matter-just-black-holes-made-during-the-big-bang/

Further Searches

A Broad Spectrum of Ideas

- Axions from supernova explosions <u>arXiv:2008.03924</u>
 - Would require HE- γ detector at the opposite of X-ray detector

Phys. Rev. D 100, 123020

- If g_{ae} sufficiently high, characterisation of solar metallicity by measuring elemental peaks in ABC axion spectrum
- Helioscope as solar magnetometers <u>Phys. Rev. D 102, 043019</u>
- High frequency gravitational waves by primordial black holes

PhysRevD.106.103520 PhysRevD.106.063027 JCAP03(2021)054

Summary & Outlook

... and a Dream

- After ALPS II, BabyIAXO is the next in the line of local axion/ ALPs experiment @ DESY
- BabyIAXO is prototype for IAXO, but will be a fully fledged helioscope with discovery potential in many channels!
- Helioscope searches offer unique environment to probe different couplings ($g_{a\gamma\gamma}$, g_{ae} , g_{aN}) and ma individually for a significant part of the parameter space
 - ➡ Distinguishing of different axion models possible
- (Baby)IAXO might turn into a facility to search for more generic axion-related physics and beyond: DM axions, SN axions, dark photons, HFGW,...

Thank you for your attention!

IAXO Collaboration Meeting @ DESY, Hamburg, 12-15.03.2023 ~125 scientists from 22 full member institutions + 5 associate institutions. <u>https://iaxo.desy.de</u>

DESY. | (Baby)IAXO: Distinguishing Axion Models & Further Searches | Daniel Heuchel | FH Particle Physics Pizza Seminar | 26.06.2023 |

Backup

Full members: Kirchhoff Institute for Physics, Heidelberg U. (Germany) | IRFU-CEA (France) | CAPA-UNIZAR (Spain) | INAF-Brera (Italy) | CERN (Switzerland) | ICCUB-Barcelona (Spain) | Petersburg Nuclear Physics Institute (Russia) | Siegen University (Germany) | Barry University (USA) | Institute of Nuclear Research, Moscow (Russia) | University of Bonn (Germany) | DESY (Germany) | University of Mainz (Germany) | MIT (USA) | LLNL (USA) | University of Cape Town (S. Africa) | Moscow Institute of Physics and Technology (Russia) | Technical University Munich (TUM) (Germany) | CEFCA-Teruel (Spain) | U. Polytechnical of Cartagena (Spain) | U. of Hamburg (Germany) | MPE/PANTER (Germany) | Associate members: DTU (Denmark) | U. Columbia (USA) | SOLEIL (France) | IJCLab (France) | LIST-CEA (France)

Collider vs. High Precision - Rare Event Search Experiments

Different Parameter Spaces to Investigate!

Current Parameter Space - Axion-Photon Coupling

Experimental Limits + Projections Helioscopes

https://cajohare.github.io/ AxionLimits/docs/ap.html

DESY. | (Baby)IAXO: Distinguishing Axion Models & Further Searches | Daniel Heuchel | FH Particle Physics Pizza Seminar | 26.06.2023 |

Current Parameter Space - Axion-Electron Coupling

Experimental Limits + Projections

Current Parameter Space - Axion-Neutron Coupling

Experimental Limits + Projections

Current Parameter Space - Axion-Proton Coupling

Experimental Limits + Projections

Current Parameter Space - Dark Photons

Experimental Limits + Projections

Structure & Drive System

And Alignment to the Sun

- Reusing parts of CTA/MST prototype • from DESY Zeuthen 💦
- Technical studies progressing well ٠
 - Design almost finished
 - Rotation: 360°, Tilt: ±25°
 - Pointing precision < 0.01°
 - Extensive simulations of load distributions and deformations
 - Internal and external alignment studies

Magnet (Design by CERN)

Prospects and Challenges

 Two 10 m long bores with common coil racetrack design, cryocooler concept

DESY. | (Baby)IAXO: Distinguishing Axion Models & Further Searches | Daniel Heuchel | FH Particle Physics Pizza Seminar | 26.06.2023 |

Magnet (Design by CERN)

Prospects and Challenges

- Two 10 m long bores with common coil racetrack design, cryocooler concept
- Ongoing discussion mainly due to difficulties in building AI-stabilised superconducting cables, critical item
 - Potential Russian companies not available
 - Causing additional costs and delays

-0.5

-0.5

-2.5

-0 Z Axis

Magnet (Design by CERN)

Prospects and Challenges

- Two 10 m long bores with common coil racetrack design, cryocooler concept
- Ongoing discussion mainly due to difficulties in building AI-stabilised superconducting cables, critical item
 - Potential Russian companies not available
 - Causing additional costs and delays
- Collaboration of magnet experts (DESY+CERN)
 - Build up competence to build cable at CERN or let it built by a suitable industrial partner
 - Constantly improving cryogenic system
 - Conceptual design under preparation, new magnet review upcoming

-0.5

-0.5

-2.5

-0 Z Axis

Optics Focusing X-Rays

- Two different X-ray focusing optics to be used
- 1. XMM Newton flight spare XRT from ESA
 - ➡ Focal length: 7.5 m
 - ➡ To be re-calibrated at MPE/PANTER

ESA XMM Newton

Optics Focusing X-Rays

- Two different X-ray focusing optics to be used
- 1. XMM Newton flight spare XRT from ESA
 - ➡ Focal length: 7.5 m
 - ➡ To be re-calibrated at MPE/PANTER
- 2. Custom optics (hybrid approach)
 - ➡ Focal length: 5 m
 - ➡ Significant progress in test for different mirror coating, design and calibration
- Challenges: Throughput efficiency (40-60%) and focal area (0.2 cm²)

ESA XMM Newton

Muon Measurements I

BabyIAXO Circle of Rotation + Shaft

• Defined 10 measurement locations at the outer radius of the BabyIAXO circle of rotation

Muon Measurements II

Acceptance Angle

- Long time measurements below shaft with varying scintillator distance d
 - → Calculation of acceptance angle β
 - Comparison to angular spectrum of cosmic rays and calculation of expected rates
 - ➡ Trend similar, but experimental values systematically lower: misalignment, bar size, layers of concrete,...

BabyIAXO & IAXO physics reach

IAXO & meV axion cosmology

DESY. | (Baby)IAXO: Distinguishing Axion Models & Further Searches | Daniel Heuchel | FH Particle Physics Pizza Seminar | 26.06.2023 |

Axion Search Sensitivity

Couplings

O. Straniero et al.

IAXO sensitive to axion – photon and axion – electron coupling, in contrast to light-shining-through-awall experiments and haloscopes

Baby-IAXO magnets (II)

- Two bores of 70 cm diameter (dimensions similar to final IAXO bores) and 10 m length
- Field in bore 2 3 T

 $f_{\rm M} = B^2 L^2 A$

About 10 times larger than in CAST

- Design of supporting structures
 Repelling force 34 MN
- Defining the electrical circuit: Direct drive (no risk) vs Persistent Mode Drive (R&D)
 Quench protection
- Cryogenics:

cryocoolers based cooling system evaluation of the heat load

Magnet Prospects and Challenges

- Two 10 m long bores with 70 cm diameter each, magnetic field \sim 2 T
 - Common coil racetrack design with counter-flowing currents
- Dry detector magnet concept based on cryocoolers, cold mass 4.5 K
 - Ongoing adaptations due to difficulties in obtaining Al-stabilised superconducting cables
 - ➡ Potential Russian providers not available
 - ➡ Critical item, causing delays

~35 km Superconductor

• Intense collaboration with magnet experts at CERN

1.5

B, T

3

- ➡ Requests for quotations and tendering restarted recently
- New review upcoming, conceptual design under preparation

-0.5

0.5

y, m

Optics Focal Plane with Spot Events

IAXO-DO: the Micromegas prototype at Unizar

Triple layer veto system with cadmium sheets to discriminate neutron background

Prospective (Baby)IAXO X-ray detectors

GridPix

- Evolution of Micromegas detector
- · CMOS chip in readout plane
- Single electron detection

Metallic magnetic calorimeters

- high energy resolution ~1.6 eV fwhm
- "no" threshold from detector, but window necessary for cryostat
- → Especially useful for axion spectroscopy in case of signal

Silicon drift detectors

- Low threshold < 500 eV
- Good energy resolution ~ 130 eV fwhm
- no window necessary

+ Transition Edge Sensors (TES) R&D

Other detectors under study

Many alternative detectors are being considered and are undergoing development for later stages of BabyIAXO data taking

- Other technologies under study
 - IAXO as a generic infrastructure for axions and ALPs physics
 - and R&D of alternative detectors with different properties
 - Excellent energy resolution, energy threshold, high efficiency and ultra-pure materials
 - Improve the energy threshold → investigation of fine structures in the axion spectrum
- Post-discovery scenario
 - If positive signal, low threshold + good energy resolution \rightarrow possibility to determine m_a and g_{ae}
 - Minimization of systematics effects and reinforcement of the claim significance

Micromegas

Silicon Drift Detectors (SDD)

Transition Edge Sensors (TES)

Simulation and Analysis Strategy

JCAP03(2019)039

IAXO Parameters

Parameter	Value
Magnetic field strength B	2.8 T
Length of conversion volume L	20 m
Cross-section of conversion volume A	$2\mathrm{m}^2$
Figure of merit (B^2L^2A)	$6272 \mathrm{T}^2 \mathrm{m}^4 ~(\sim 300 \times \mathrm{CAST})$
Total tracking time t	$100\mathrm{days}$
Bandwidth	$(1{-}10)\mathrm{keV}$
Energy resolution $\Delta \nu$	$1\mathrm{keV}$
Inverse absorption length Γ	0 (vacuum)
Efficiency of telescope Q	0.5
Background level	$10^{-7}{\rm keV^{-1}s^{-1}cm^{-2}}$
Detector area A_{detect}	$1\mathrm{cm}^2$

Simulation and Analysis Strategy

JCAP03(2019)039

Example

Red: truth input values Green: Upper value in 95% certainty interval Blue: Lower value in 95% certainty interval

Procedure repeated for many other expectation values of g_{ae} to check accessible area in parameter space

DESY. | (Baby)IAXO: Distinguishing Axion Models & Further Searches | Daniel Heuchel | FH Particle Physics Pizza Seminar | 26.06.2023 |

Results: Massive Case

JCAP03(2019)039

Increasing Decoherence in Axion-Photon Conversion

 Lower sensitivity due to higher photon absorption with increasing gas pressure (higher m_a)

Studied Experimental Setups

Optimising for 14.4 keV photons

Label	BabyIAXO				IAXO		IAXO+	
	Baseline BabyIAXO ₀	No optics BabyIAXO ₁	Optimized optics BabyIAXO ₂	High energy resolution BabyIAXO ₃	Low background IAXO _b	High energy resolution IAXO _r	Low background IAXO _b ⁺	High energy resolution IAXO ⁺
<i>B</i> [T]	2	2	2	2	2.5	2.5	3.5	3.5
<i>L</i> [m]	10	10	10	10	20	20	22	22
<i>A</i> [m ²]	0.77	0.38	0.38	0.38	2.3	2.3	3.9	3.9
t [year]	0.75	0.75	0.75	0.75	1.5	1.5	2.5	2.5
$b\left[\frac{1}{\text{keVcm}^2s}\right]$	10^{-7}	10^{-6}	10^{-7}	10^{-5}	10^{-8}	10^{-6}	10^{-9}	10^{-6}
ϵ_d	0.15	0.9	0.5	0.99	0.99	0.99	0.99	0.99
ϵ_0	0.013	1	0.3	0.3	0.3	0.3	0.3	0.3
$a [\mathrm{cm}^2]$	0.6	3800	0.3	0.3	1.2	1.2	1.2	1.2
$r_{\omega} = \frac{\Delta E_d}{14.4 \mathrm{keV}}$	0.12	0.12	0.12	0.02	0.02	$\frac{5}{14400}$	0.02	$\frac{5}{14400}$

(Baby)IAXO and HFGW

Detection Possible?

- High frequency gravitational waves are expected in non-standard scenarios, e.g. from primordial black holes
- Gravitational waves converted into photons by inverse Gertsenshtein effect in a strong magnetic field
 - (Baby)IAXO sensitive to specific frequencies?
- Emerging field of study, synergies?

Hidden photons at IAXO

 10^{-}

 10^{-8} Search for hidden photons, both solar 10^{-9} • 10^{-10} and DM. Same configuration as with Kinetic mixing 10-12 10-13 10-13 10-14 10-12 axions but without B-field. 10^{-12} 10^{-13} DAMIC 10^{-15} SENSEI Frequency [GHz] SuperCDMS 10^{-16} 10^{0} **XENON** 10^{-} 10^{-17} $\times^{10^{-10}}$ $\times^{10^{-11}}$ 10^{-10} SHUKE' Dark photons as dark matter 10^{-18} 10-2 102 103 104 10, 10 10 WISPDMX Dark photon mass [eV] 10^{-12} APP Computed by T. O'shea. ADMX-1 Paper in preparation... Dark E-field SQUAD ADMX-3 BabyIAXO RADES ADMX-2 10^{-12} $\rho_{\rm DM} = 0.45 \ {\rm GeV} \ {\rm cm}^{-3}$ 10^{-1} 10^{-5} 10^{-6} Dark photon mass, m_X [eV]

Computed by C. Cogollos. Paper in preparation...

keV