four top quarks (Experiment)

Slides largely taken also from these talks (both highly recommended):

F. Déliot https://moriond.in2p3.fr/QCD/2023/MondayMorning/Deliot.pdf (ATLAS tttt obs)

K. Skovpen https://indico.cern.ch/event/1231799/attachments/2619648/4528902/kskovpenCERN.pdf (CMS tttt obs)

freyablekman FH physics discussion

Experiments: CMS, ALICE, LHCb in France; ATLAS in Switzerland

LHC: search engine

 "Physics beyond the standard model"
 Advanced Search

 Google Search
 I'm Feeling Lucky

Make your homepage beautiful with art by leading designers

History top quark – at the start of LHC

22 freyablekman FH physics discussion be.h annual meeting, freyablekman@vub.be

DESY.

Top quark: now

freyablekman FH physics discussion

DESY

BSM signatures in the ttbar phase space

freyablekman FH physics discussion

DESY.

Use th	Advanced Search Preferences			
	Google Search	I'm Feeling Lucky		Language Tools

Make your homepage beautiful with art by leading designers

Advertising Programs - Business Solutions - About Google

©2008 - Privacy

Top pair branching fractions

DESY

Top physics: decay channel choice

 Difficulty of isolation of top quark events inversely proportional to the complexity of the mass reconstruction

	Isolation signal	Reconstruction
Di-lepton	Relatively easy	Two neutrinos, ambiguities
Lepton+jets	Reasonable	One neutrino, use missing transverse energy
All-hadronic	Very difficult	Possibility to observe top as 'peak' in invariant mass spectrum, no energetic neutrinos

tttt: theory and strategy

goolooo

g_2020202

Η

Cross section ~1 order of magnitude smaller than ttH

Signatures: 4leptons4b - 3leptons4b2j – 2leptons4b4j -1lepton4b6j – 4b8j

Experimental results don't always use the the newest cross section - fb comparison always better than mu/signal strength

Analysis strategy

- Depends on final state
 - (similar ttH analysis: fewer leptons = more work)

The top quark ladder

freyablekman FH physics discussion

DESY.

Four top quark cross section - what is it?

Complete NLO

- Substantial **cancellation** at tree level between QCD and subdominant EW contributions
 - ➡ Large NLO corrections
- NLO EW corrections are subdominant but can be considerably enhanced at differential level
- Full NLO accuracy including oneloop and real emission corrections with terms of $\mathcal{O}(\alpha_s \alpha^2)$, $\mathcal{O}(\alpha^3)$, $\mathcal{O}(\alpha_s \alpha)$, $\mathcal{O}(\alpha^2)$

b]	$\mathrm{LO}_{\mathrm{QCD}}$	$\mathrm{LO}_{\mathrm{QCD}} + \mathrm{NLO}_{\mathrm{QCD}}$	LO	$\mathrm{LO} + \mathrm{NLO}$	$\frac{\rm LO(+NLO)}{\rm LO_{QCD}(+NLO_{QCD})}$		
$T_T/4$	$6.83^{+70\%}_{-38\%}$	$11.12^{+19\%}_{-23\%}$	$7.59^{+64\%}_{-36\%}$	$11.97^{+18\%}_{-21\%}$	1.11 (1.08)	17	
		JHEP 02 (2018) 031		PRD 105 (2022) 11		К.	SKO

vpen

Four top quark cross section - what is it?

NLO + NLL'

- Recent calculations at next-to-leading logarithmic (NLL') accuracy
- Resummation of soft gluon emissions for four colored particles (for the first time)
- Increase in cross section by 15%

 $\sigma^{
m NLO}_{t\bar{t}t\bar{t}}$ (fb)

 $11.00(2)^{+25.2\%}_{-24.5\%}$ fb

 $13.14(2)^{+25.1\%}_{-24.4\%}$ fb

 $\sigma_{t\bar{t}t\bar{t}}^{\rm NLO(QCD+EW)}$ (fb)

 $11.64(2)^{+23.2\%}_{-22.8\%}$ fb

 $13.80(2)^{+22.6\%}_{-22.9\%}$ fb

• Decrease in scale uncertainties by **50%**

arXiv:2212.03259

 \sqrt{s} (TeV)

13

13.6

 \sqrt{s} (TeV)

13

13.6

	[
DESY.	

<u>On ttbar+HF</u>

- Entire topic by itself
 - With theory considerations!
 - Also very relevant for ttH production
- Important to remember for four-top production: these are real b quarks
 - so just using (tight) btagging to reject QCD background is typically not the most beneficial strategy as it cuts (just as) hard into signal

Different final states

CMS all-hadronic, l+jets, OSDL: TOP-21-005 (accepted <u>arXiv:2303.03864</u>)

ATLAS I+jets, OSDL: arXiv:1811.02305

CMS: evidence for tttt (I+jets input)

l⁺, q

b

v, ā

 W^+

More details: CMS TOP-21-005 <u>arXiv:2303.03864</u> (Accepted PLB) Lepton+jets

- First studied at 8 TeV, 20 fb⁻¹
- Production cross section ≈ 1 fb

IHEP 11 (2014) 154

 Introduce a « trijet » tagger in a BDT σ_{tītī} < 32 fb @ 95 % CL

- Followed by the study at 13 TeV, 138 fb⁻¹
- Apply **H**_T > **500 GeV**
- **Categorize** events based on lepton flavor, jet and b-tagged jet multiplicities, number of resolved top quark candidates

 $S = 1.4 (1.2) \sigma$

CMS: evidence for tttt (OS leptons input)

OS leptons+jets

- Done with 101 fb⁻¹ of 13 TeV data
- Use the H_T > 500 GeV spectrum in the fit

DESY

• **Categorize** by lepton flavors, also by jet and b-tagged jet multiplicities

 $S = 1.8 \, (0.6) \, \sigma$

More details: CMS TOP-21-005 arXiv:2303.03864

freyablekman FH physics discussion

CMS: evidence for tttt (all-hadronic input)

All-hadronic

arXiv:2303.03864 (Submitted to PLB)

- Done for the first time with **138 fb-1** of **13 TeV** data
- Select events with no prompt isolated leptons in H_T > 700 GeV
- Use the improved **DeepJet** b-tagger
- Categorize events in H_T, the number of boosted top quark candidates, jet and b-tagged jet multiplicities
- **BDT** to separate signal from QCD and tt backgrounds

 $S = 2.5 (0.4) \sigma$

13

 ABCD method to estimate background

Innovative ML intermezzo

*Huang, Krueger, Lacoste, Courville. Neural Autoregressive Flows. arXiv:1804.00779 *S. Choi. arXiv:2008.0363

- Neural net (NN) finds transformation from input distribution
 - \rightarrow target distribution (Neural autoregressive flow)
- Maps simulated tt distributions onto tt + QCD distributions in 5 CR distributions for BDT & H_{τ} simultaneously

Nicholas Manganelli - UC Riverside

14

FH physics discussion freyablekman

Innovative ML intermezzo

More details: CMS TOP-21-005 arXiv:2303.03864

CMS: evidence for tttt in 0,1,2(OS) leptons

Why re-analysis?

freyablekman FH physics discussion

ATLAS: SSDL, ML (motivation)

FH physics discussion

freyablekman

ATLAS: SSDL, ML (backgrounds)

DESY

Background estimation in the four top cross section measurement

Events

300

250 Post-Fit

200

150

100

50

∏tī₩

∎ tī H

Mat. Conv.

Uncertainty

Low m

Others

vs = 13 TeV, 140 fb⁻¹

CR tīW⁺+jets

- ttZ+jets and ttH+jets background: - From simulation
- •ttW+jets background:
 - Njets dependence fitted to data using 4 free parameters
 - 4 control regions with 1 b-tag jet and with low Ht, split by charge

$t\bar{t}W$ background	a_0	a_1	$NF_{t\bar{t}W^+(4jet)}$	$NF_{t\bar{t}W^-(4jet)}$
Value	$0.51^{+0.10}_{-0.10}$	$0.22^{+0.25}_{-0.22}$	$1.27\substack{+0.25 \\ -0.22}$	$1.11\substack{+0.31 \\ -0.28}$

Submitted to EPJC arXiv:2303.15061

Events

200[†]

180

160

140

120

100

√s = 13 TeV, 140 fb⁻¹ ⅢttW

tīH

Mat. Conv.

Uncertainty

Low m

Others

CR tīW +jets

Post-Fit

■tīZ

QmisID

HF e

HF u

···· Pre-Fi

tīt

tīttī

QmisID

HF e

ΗF μ

---- Pre-Fit

tīt

■tīZ

FH physics discussion freyablekman

ATLAS: SSDL, ML (backgrounds)

DESY

Background estimation in the four top cross section measurement

- Fake/non prompt lepton background
 - Shape from MC, normalisation from data using control regions enriched in fake (low jets multiplicity, low Ht)
- Charges mid-ID
 - Charge flip rate from data

Frédéric Déliot, MoriondQCD 23, 27-MAR-23

Submitted to EPJC arXiv:2303.15061

freyablekman FH physics discussion

12

ATLAS: SSDL, ML: Signal region

Four top cross section measurement

DESY

- Graph neural network (GNN) to separate signal from backgrounds
- Simultaneous profile likelihood fit to data in the signal region and the 8 control regions
 - $\mu = 1.9 \pm 0.4(\text{stat}) \stackrel{+0.7}{_{-0.4}}(\text{syst})$ $\sigma_{t\bar{t}t\bar{t}} = 22.5^{+4.7}_{-4.3}$ (stat) $^{+4.6}_{-3.4}$ (syst) fb

compatible at 1.8 σ with the SM prediction (wrt 12 fb) Largest systematic uncertainties on signal modelling

Frédéric Déliot, MoriondQCD 23, 27-MAR-23

13

Submitted to EPJC arXiv:2303.15061

Expected significance: 4.3 σ (wrt 12 fb) /4.7 σ (wrt 13.4 fb)

GNN>0.9

∏tīW

tīH

Mat. Conv

∎tīZ

HF e

QmisID

vs = 13 TeV, 140 fb⁻¹

GNN > 0.9

Post-Fit

Observed significance: 6.1σ

GNN>0.6

≣tī₩

tŤΗ

Mat. Conv.

■tīZ

HF e

QmisID

ATLAS Preliminary + Data

vs = 13 TeV, 140 fb⁻¹

GNN ≥ 0.6

Post-Fit

FH physics discussion freyablekman

ATLAS: three tops?

Four top as a path to three top

Submitted to EPJC arXiv:2303.15061

freyablekman FH physics discussion

DESY

ATLAS: three tops?

CMS: SSDL, ML: analysis strategy

CMS TOP-22-013 - arXiv:2305.13439 (submitted to PLB)

- Analyze multi lepton channels: 2LSS, 3L, 4L
- Event categorization based on jet and b-tagged jet multiplicities, H_T

• Electrons (muons):

- $p_T > 10 \text{ GeV}, |\eta| < 2.5 (2.4)$
- LeptonMVA ID
- p_T > 25, 20, 10, 10

- Jets:
 - $p_T>25$ GeV, $|\eta|<2.4$
 - DeepJet b tagging ($\varepsilon = 90\%$)
 - Use DeepJet score in MVA

<u>CMS: SSDL, ML: analysis strategy</u>

Final fit

- All SRs and CRs are included in a binned profile likelihood fit
- Additionally split SRs into three subregions ($t\bar{t}t\bar{t}$, $t\bar{t}V$, and $t\bar{t}$) based on the highest value of three BDT scores

CMS: SSDL, ML (backgrounds)

freyablekman FH physics discussion

LΜ

DESY.

CMS: SSDL, ML

DESY.

CMS: SSDL, ML

arXiv:2305.13439 (submitted to PLB)

freyablekman FH physics discussion

..M

DEŚY.

CMS: SSDL, ML

freyablekman FH physics discussion

ΞM

DESY.

CMS: SSDL, ML: result

DESY

arXiv:2305.13439 (submitted to PLB)

- Clearly **need** something like four tops to exist to be able to describe the data
- $\sigma_{t\bar{t}t\bar{t}}/\sigma^{th.}_{t\bar{t}t\bar{t}} = 1.3 \pm 0.3$
- $\sigma_{\rm ttW}/\sigma_{\rm ttW}^{\rm th.} = 1.4 \pm 0.1$
- $\sigma_{\text{tt}Z} / \sigma_{\text{tt}Z}^{\text{th.}} = 1.3 \pm 0.1$
- Measured ttW and ttZ cross sections are in agreement with SM within 2.3 σ and 2.2 σ, respectively

•
$$S_{t\bar{t}t\bar{t}} = 5.5 (4.9) \sigma$$

in agreement with SM

 $\sigma_{t\bar{t}W} = 997^{+98}_{-92} \text{ fb}$ $\sigma_{t\bar{t}Z} = 1134^{+100}_{-96} \text{ fb}$ $\sigma_{t\bar{t}t\bar{t}\bar{t}} = 17.9^{+3.7}_{-3.5} \text{ (stat.)} ^{+2.4}_{-2.1} \text{ (syst.) fb}$

Four-tops now really established in multi lepton final states!

Also shows power of well-understood data!

Some thoughts on interpretation

- The CMS and ATLAS tttt results are all very ML heavy
- The various ML methods are trained on (N)LO tttt MC (typically even with many diagrams turned off on purpose!)
- See for example <u>1501.07580</u> for example of the consequences
 - (executive summary: ML results cannot necessarily be directly interpretated in BSM context if scale >4*mtop TeV)

Different approaches to EFT

- ATLAS: BSM-like EFT looking for dramatic changes in shape at high scale
- CMS: SM-like EFT trying to constrain small changes cross section limit/ uncertainties and mapping fit cross section limits to Wilson coefficients
- Both have pros and cons

EFT interpretations

- Like many rare processes involving loop diagrams, four-top production is extremely sensitive to new physics
- SM effective field theory at order 6

$$\mathcal{L}_{\rm EFT} = \mathcal{L}_{\rm SM}^{(4)} + \frac{1}{\Lambda} \sum_{k} C_{k}^{(5)} \mathcal{O}_{k}^{(5)} + \frac{1}{\Lambda^{2}} \sum_{k} C_{k}^{(6)} \mathcal{O}_{k}^{(6)} + o\left(\frac{1}{\Lambda^{2}}\right)$$

- ATLAS previous Run 2: use \mathcal{L}_{EFT} $\mathcal{L}_{SM}^{(4)}$ as signal model, constrain Λ
- CMS FTR/Run 2(2016): constrain $\mathcal{L}_{EFT} / \mathcal{L}_{SM}^{(4)}$ with $\Delta \sigma_{tttt} / \sigma_{tttt}$, fix Λ , constrain C_k
- HL-LHC yellow report has lookup tables to map cross section uncertainties to EFT parameters!

Yukawa coupling from y_t

- About 20% of tttt production diagrams contain H, and y_t has substantial influence on value σ_{tttt}
- Interpreting more than just cross section: not easy (as many diagrams involved) with current MC - will be very ML heavy goal

CMS-TOP-21-005 arXiv:2303.03864 (see additional material)

Yukawa coupling from y_t

- About 20% of tttt production diagrams contain H, and y_t has substantial influence on value σ_{tttt}
- ATLAS mad an attempt in the context of the CP even/odd H yukawa
 - ttH dependence other important effect

Submitted to EPJC arXiv:2303.15061

t at the LHC, CERN Many more high multiplicity top physics results in the future 2016-May-29 22:35:55:226560 GMT : 274199 / 548714092 / 285

t at the LHC, CERN Many more high multiplicity top physics results in the future 2016-May-29 22:35:55.226560 GMT

: 274199 / 548714092 / 285

Systematic impacts

