QCD Phase Diagram and LHC Analysis

Introduction

- I Phase diagram at $\mu = 0$
- II Phase diagram at $\mu \neq 0$

at high temperature and/or density

QCD undergoes a transition from the hadronic phase to the quark-gluon plasma

confinement - deconfinement

quenched:

full QCD:

Chiral symmetry restoration $SU_V(N_F) \rightarrow SU_L(N_F) \times SU_R(N_F)$

• at $T > T_c$, chiral symmetry restoration: V = A

• at $T \neq 0$, for spatial correlations: rotational $SO(3) \rightarrow SO(2) \times Z(2)$

$$\Rightarrow V_T \neq V_L, A_T \neq A_L$$
 possible

Quantum Statistics in equilibrium :

partition function
$$Z = \operatorname{tr} \left\{ e^{-\hat{H}/T} \right\}$$

 \rightarrow Feynman path integral

$$Z(T,V) = \int \mathcal{D}\phi(\vec{x},\tau) \exp\left\{-\int_0^{1/T} d\tau \int_0^V d^3 \vec{x} \,\mathcal{L}_E[\phi(\vec{x},\tau)]\right\}$$

- integral over all configurations $\phi(\vec{x},\tau)$

- weighted by Boltzmann factor $\exp(-S_E)$

 $\begin{array}{ll} \text{apply standard thermodynamic relations, e.g.} \\ \text{energy density} & \epsilon = \frac{T^2}{V} \frac{\partial \ln Z}{\partial T} \Big|_{V} \\ \text{specific heat} & c_{V} = \frac{1}{VT^2} \frac{\partial^2 \ln Z}{\partial (1/T)^2} \Big|_{V} \end{array}$

in general

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \operatorname{tr} \left\{ \hat{\mathcal{O}} e^{-\hat{H}/T} \right\} = \frac{1}{Z} \int \mathcal{D}\phi \, \mathcal{O}[\phi] e^{-S_E[\phi]}$$

- euclidean "time" $\tau=it$

- (anti-) periodic boundary conditions in τ

also : starting point of perturbation theory i.e. expansion in coupling strength g

numerical treatment of QCD \Rightarrow discretize (Euclidean) space-time

finite yet high-dimensional path integral

\rightarrow Monte Carlo

• thermodynamic limit, IR - cut-off effects

Na (for the size sealing)

- continuum limit, UV cut-off effects
- chiral limit

numerical effort $\sim (1/m)^p$

$$LT = \frac{Mu}{N_{\tau}} \to \infty$$
 (finite size scaling)
 $aT = \frac{1}{N_{\tau}} \to 0$ improved actions
 $m \to m_{\rm phys} \simeq 0$

Phase diagram at vanishing baryon density $(\mu = 0)$

as expected in the $m_{u,d} - m_s$ plane

critical temperature $N_F = 2 + 1$, physical K mass

combined continuum/chiral extrapolation (d = 1.08 for O(4), d = 2 for first order)

$$(T_c r_0)_{m_l, N_\tau} = T_c r_0 + A(m_{PS} r_0)^d + B/N_\tau^2$$

chiral limit $T_c r_0 = 0.444(6)_{-2}^{+12}$ $T_c/\sqrt{\sigma} = 0.399(5)_{-1}^{+10}$ phys. point $T_c r_0 = 0.456(7)_{-1}^{+3}$ $T_c/\sqrt{\sigma} = 0.408(7)_{-1}^{+3}$

with new T = 0 MILC (lattice) results for $r_0 = 0.469(7)$ fm obtain: $T_c = 192(5)(4)$ MeV

$N_F = 3$

2.2

- Binder cumulant B_4 $B = \frac{\langle \delta M^4 \rangle}{\langle \delta M^2 \rangle^2}$ - intersection for various V
- yields critical value of m
- value of B_4 is universal

8³x4 ⊢

- corrections from V finite and 'order parameter not matched correctly'

indicating large lattice artefacts

magnetization-like order parameter \mathcal{M} not identical with chiral condensate $\langle \overline{q}q \rangle$ (chiral symmetry broken by $m_q \neq 0$ anyway)

 $\mathcal{M} = \langle \overline{q}q \rangle + sS$

$\Theta^{\mu}_{\mu}(T)/T^4$

pressure $p(T)/T^4 = \int^T dT' \Theta^{\mu}_{\mu}(T')/T^5 + c$

energy density $\varepsilon(T)$

at $\gtrsim 2T_c$ almost no discretization effects at $\gtrsim 2T_c \ 10\%$ deviations from ideal gas

LHC: $\varepsilon \lesssim 1 \text{ TeV/fm}^3 \cong T \simeq 900 \text{ MeV}$

LHC \rightarrow properties of the Quark-Gluon Plasma

e.g. J/Ψ suppression

- individual "melting" temperatures $> T_c$
- suppression patterns

- LHC: large abundance of c-quarks
 - \bullet feed down from b-quarks

the difficulty

$$rac{p}{T^4} = N_{ au}^4 imes \{ ext{signal} \pm ext{statistical error} \}$$

ideal gas limit at finite $aT = 1/N_{\tau}$:

 \Rightarrow improved actions mandatory

improving thermodynamics: Naik action, p4 action improving flavor symmetry: fat links, stout links Phase diagram at non-vanishing baryon density $(\mu_B = 3\mu_q \neq 0)$

it is generally believed that the fireball expansion follows a line of fixed S/N_B

$$\frac{S}{N_B} = 3 \frac{\frac{37\pi^2}{45} + (\frac{\mu_q}{T})^2}{\frac{\mu_q}{T} + \frac{1}{\pi^2}(\frac{\mu_q}{T})^3} \qquad \Rightarrow \frac{\mu_q}{T} = \text{const (vertical lines)}$$

isentropic expansion lines for

FAIR:
$$S/N_B \simeq 30$$

SPS: $S/N_B \simeq 45$
RHIC: $S/N_B \simeq 300$
LHC: < 300

expected properties :

the problem :

$$Z_{GC}(T, V, \boldsymbol{\mu}) = \int \mathcal{D}U_{\mu} \, \mathcal{D}q \, \mathcal{D}\overline{q} \, \exp\left\{-S_{G}(U) + \overline{q}M(\boldsymbol{\mu})q\right\}$$

integrate over quark fields

$$Z_{GC}(T, V, \mu) = \int \mathcal{D}U_{\mu} \det M(\mu) \exp \{-S_G(U)\}$$

- for $\mu \neq 0$: det $M(\mu)$ complex \Rightarrow can not be used as statistical weight in Monte Carlo
- reformulate: det $M(\mu) = |\det M(\mu)| e^{i\Theta}$ and use phase Θ as (part of the) observable: $\langle \mathcal{O} \rangle_{\det M} = \langle \mathcal{O} e^{i\Theta} \rangle_{|\det M|} / \langle e^{i\Theta} \rangle_{|\det M|}$
- but : $\langle e^{i\Theta} \rangle_{|\det M|} \sim e^{-V}$ 'sign problem'

[Glasgow; Fodor,Katz]

* 'Reweighting'

simulate at parameters $p_0 = (g, m, \mu)_0$ and reweight to $p = (g, m, \mu)$

 $\mathcal{D}Ue^{-S_G(p)} \det M(p) = \frac{\mathcal{D}Ue^{-S_G(p_0)} \det M(p_0) \star e^{-[S_G(p) - S_G(p_0)]} \frac{\det M(p)}{\det M(p_0)}}{\text{simulation}}$

• limited by overlap

* 'Taylor-expansion'

[Bielefeld-Swansea; Gavai,Gupta]

$$\langle \mathcal{O} \rangle \left(\frac{\mu}{T} \right) = \langle \mathcal{O} \rangle_{\mu=0} + \langle \tilde{\mathcal{O}}_2 \rangle_{\mu=0} \star \left(\frac{\mu}{T} \right)^2 + \langle \tilde{\mathcal{O}}_4 \rangle_{\mu=0} \star \left(\frac{\mu}{T} \right)^4 + \dots \quad \text{with}$$

• limited by convergence radius

* 'imaginary μ '

- $\mu = i\mu_I \Rightarrow \det M$ real and positive
- analytic continuation to real μ
- limited by $Z(\mu_I/T) = Z(\mu_I/T + 2\pi/3)$

[Forcrand, Philipsen; D'Elia, Lombardo]

* 'canonical'

[Forcrand,Kratochvila]

$$Z_C(B) = \frac{1}{2\pi} \int d\left(\frac{\mu_I}{T}\right) \exp\left\{-i3B\frac{\mu_I}{T}\right\} Z_{GC}(\mu = \mu_I)$$

- sample at fixed μ_I
- Fourier transform each determinant \rightarrow work $\sim N_{\sigma}^9 \times N_{\tau}$
- combine with reweighting in μ_I
- back to $Z_{GC}(\mu)$ by $\Sigma_B \exp\left\{+3B\frac{\mu}{T}\right\} Z_C(B)$

- applicable at small values for μ in the phenomenologically relevant range for RHIC, LHC
- first, exploratory results in qualitative agreement, further systematic investigations required
- in particular at smaller quark masses :

- considerable quark mass dependence

 $N_F = 3$, improved action

$$\frac{T_c(\mu)}{T_c(0)} = 1 - 0.025(6) \left(\frac{\mu}{T_c(0)}\right)^2$$

$$\frac{T_c(\mu)}{T_c(0)} = 1 - 0.114(46) \left(\frac{\mu}{T_c(0)}\right)^2$$

(perturbative β -function $d\beta_c/d\ln a$)

• comparison: up to $\mathcal{O}(\mu^4)$ (dashed) with up to $\mathcal{O}(\mu^6)$ (full) suggests rapid convergence

• contribution to total p is small: $p(\mu = 0)/T^4 \simeq \mathcal{O}(4)$

- peak in χ_q developing with increasing μ
- no peak in χ_I

 \Rightarrow around T_0 strong correlations between u and d fluctuations

• χ_q rises rapidly with increasing μ_q , but rise to a large extent due to rise in pressure

- no indication of criticality
- but, for $T \leq 0.96T_c$, consistency with hadron resonance gas model (at $\mu_I = 0$)

$$\frac{n_q^{HRG}}{\mu_q \chi_q^{HRG}} = \frac{T}{3\mu_q} \tanh\left(\frac{3\mu_q}{T}\right)$$

convergence radius

nearest (complex) singularity determines convergence radius

$$\rho = \lim_{k \to \infty} \rho_k = \lim_{k \to \infty} \sqrt{\left|\frac{c_k}{c_{k+2}}\right|}$$

- SB limit:
$$\rho_k = \infty$$
 for $k \ge 4$
- for T big: approaching SB limit

- at
$$T_c(\mu)$$
 : $\rho_k \simeq 1$

- $c_k > 0 \Rightarrow$ convergence radius indicates critical point

Results:

- Gavai, Gupta: $\mu_{B,E} \simeq 180 \text{MeV}$ (Taylor expansion)
- Fodor, Katz: $\mu_{B,E} \simeq 360 \text{MeV}$ (Lee-Yang zeroes)
- Bi-Swansea: LGT consistent with HRG, HRG analytic (Taylor expansion)

existence of a critical endpoint ?

critical region has the tendency to grow with μ_I

under investigation on finer lattices/ with improved actions