Reconstructing Supersymmetric Theories near the Planck Scale

Werner Porod

Universität Würzburg

$\uparrow \uparrow$

Standard Model

GUT/String/Planck Scale 10^{16-19} GeV

- Proton decay
- Cosmology at early time of the universe
- Neutrino physics (see-saw), fermion mass textures
- Extrapolation of high precision parameters:
 - gauge and Yukawa couplings
 - SUSY parameters

Experimental information

LEP/Tevatron:

- Higgs heavier than 100 GeV
- charginos/sleptons heavier than 100 GeV
- squarks (except \tilde{t}, \tilde{b}), gluinos heavier than 250 GeV
- rare decays:

bounds on flavour violation beyond CKM

- Cold dark matter: $\Omega h^2 \lesssim 0.12$
- high precision measurments of gauge couplings
 ⇒ unification if SUSY is present

Evolution of gauge couplings

	Today/"LHC"	GigaZ/"LHC+LC"		
M_U	$(2.36 \pm 0.06) \cdot 10^{16} \mathrm{GeV}$	$(2.360 \pm 0.016) \cdot 10^{16} \mathrm{GeV}$		
α_U^{-1}	24.19 ± 0.10	24.19 ± 0.05		
$\alpha_3^{-1} - \alpha_U^{-1}$	0.97 ± 0.45	0.95 ± 0.12		

Supersymmetry breaking

- mSUGRA: M_0 , $M_{1/2}$, A_0 , $\tan\beta$, sign(μ)
- GMSB: $M_m = \lambda S$, $\Lambda = F/S$, $\tan \beta$, $\operatorname{sign}(\mu)$ $M_{1/2} = g(x)n_5\alpha_i\Lambda$, $M_i^2 = f(x)n_5\sum C_i\alpha_i^2\Lambda^2$, $x = \Lambda/M_m$
- String effective field theories: $m_{3/2}$, s, t_i , $\sin \theta$, n_i , $\tan \beta$, $\operatorname{sign}(\mu)$ $M_{1/2} = -\sqrt{3}g^2 m_{3/2} s \sin \vartheta$, $M_i^2 = m_{3/2}^2 (1 + n_i \cos^2 \vartheta)$
- AMSB: $m_{3/2}$, M_0 , $\tan \beta$, $\operatorname{sign}(\mu)$ $M_j = \frac{\beta_i}{g} m_{3/2}$, $M_i^2 = -\frac{\dot{\gamma}_i}{4} m_{3/2}^2 + c_i M_0^2$, $A_k = -\frac{\gamma_k}{2} m_{3/2}$
- Gaugino mediated / brane induced: $M_{1/2}$, $\tan\beta$, sign(μ)

$$M_{H_i} = O(M_{1/2}), M_F^2 = O\left(\frac{M_{1/2}^2}{16\pi^2}\right), A = O\left(\frac{M_{1/2}}{16\pi^2}\right)$$

Regularities at High Scales

Mass measurements, LHC

5 kinematical observables depending on 4 SUSY masses ⇒ masses within 2-5% using various assumptions

Mass measurements, ILC

Expected experimental accuracies

	Mass, ideal	"LHC"	"LC"	"LHC+LC"
h^0	116.0	0.25	0.05	0.05
H^0	425.0		1.5	1.5
$ ilde{\chi}^0_1$	97.7	4.8	0.05	0.05
$ ilde{\chi}^0_2$	183.9	4.7	1.2	0.08
$ ilde{\chi}_4^0$	413.9	5.1	3-5	2.5
$\tilde{\chi}_1^{\pm}$	183.7		0.55	0.55
$ ilde{e}_R$	125.3	4.8	0.05	0.05
$ ilde{e}_L$	189.9	5.0	0.18	0.18
$ ilde{ au}_1$	107.9	5-8	0.24	0.24
$ ilde q_R$	547.2	7-12	-	5-11
$ ilde q_L$	564.7	8.7	-	4.9
$ ilde{t}_1$	366.5		1.9	1.9
${ ilde b_1}$	506.3	7.5	-	5.7
\tilde{g}	607.1	8.0	-	6.5

$$m_0 = 70 \text{ GeV}$$
$$m_{1/2} = 250 \text{ GeV}$$
$$A_0 = -300 \text{ GeV}$$
$$\tan \beta = 10$$
$$\text{sign}(\mu) = +$$

The SPA Project

- accurate theoretical calculations to match experimental data
- model independent reconstruction of Lagrange parameters
- extrapolation to high scale

J. A. Aguilar-Saavedra *et al.* Eur. Phys. J. C **46** (2006) 43 http://spa.desy.de/spa

SPA Convention:

renormalization scheme / LE parameters / decay widths / cross sections

- Programme Base: theo + exp analyses / ILC + LHC
- Theoretical and Experimental Tasks
- References point SPS1a'
- Future Extensions: MSSM-CP, NMSSM, ...

Test of high scale models

Two methods:

- Top-Down
 - + a handful of observables are sufficient
 - model-dependent

e.g. mSugra

- $M_{1/2} = 250 \pm 0.2 \text{ GeV}$
- $M_0 = 70 \pm 0.2 \text{ GeV}$
- $A_0 = -300 \pm 13 \text{ GeV}$

Bottom-Up

- + does not depend on high scale model
- requires several observables, e.g. nearly complete spectrum

RGE structures

implicit solutions:

$$M_{i} = Z_{i}M_{1/2}$$

$$M_{\tilde{j}}^{2} = M_{0}^{2} + c_{j}M_{1/2}^{2} + c'_{j\beta}\Delta M_{\beta}^{2}(M_{0}, M_{1/2}, A_{0})$$

$$A_{k} = d_{k}A_{0} + d'_{k}M_{1/2}$$

explicit solutions:

Bottom-Up: mSugra

 $\tan \beta = 10, M_0 = 70$ GeV, $M_{1/2} = 250$ GeV, $A_0 = -300$, sign(μ) = +

Bottom-Up: GMSB

 $M_M = 200 \text{ TeV}, \Lambda = 100 \text{ TeV}, N_5 = 1, \tan \beta = 15, A_0 = 0, \operatorname{sign}(\mu) = +$

G. A. Blair, W.P., P.M. Zerwas, Phys. Rev. D 63 (2001) 017703; Eur. Phys. J. C 27 (2003) 263

Bottom-Up: String Effective Field Theory

G. A. Blair, W.P., P.M. Zerwas, Eur. Phys. J. C 27 (2003) 263

Bottom-Up: String Parameter Determination

Trying OI scheme:

$m_{3/2}$	180	$\textbf{179.9}\pm0.4$
t	14	14.6 ± 0.2
$\langle s \rangle$	2	1.998 ± 0.006
δ_{GS}	0	0.1 ± 0.4
aneta	10	10 ± 0.1
n_{H_2}	-1	-1.00± 0.02
n_L	-3	-2.94 ± 0.04
n_E	-1	-1.00 ± 0.05
n_Q	0	0.02 ± 0.02

Trying OII scheme: $n_E = -1.4 \pm 0.02$, similar for other n_i , and $\chi^2 = O(10^2)$

Trying mSugra scheme: errors in the per–cent range, $\chi^2 = O(10^2)$

Bottom-Up: mSugra + $\hat{\nu}_R$

- $m_{\nu} \neq 0$ neutrino masses via seesaw mechanism
 - \Rightarrow seesaw scale $M[\nu_R] \sim 10^{10}/10^{14}$ GeV in SO(10)
 - \Rightarrow influences the evolution 3rd generation parameters \Rightarrow kink
 - \oplus information from neutrino sector $\Rightarrow M[\nu_{R3}] \sim 10^{14}$ GeV [30%]

- Reconstruction of the underlying high scale theory is feasible
- LHC measurements + high precision measurements at future e^+e^- colliders are necessary
- ⇒ LHC + ILC yield a telescope to Plank Scale Physics