PUNCH4NFDI TA5 - XFEL Joint Workshop on Machine Learning and Data Processing on FPGAs

Deep Learning for real-time classification of astronomical radio signals

Andrei Kazantsev, Ramesh Karuppusamy, Yunpeng Men, Michael Kramer Max Planck Institute for Radio Astronomy Bonn, Germany

Max-Planck-Institut für Radioastronomie Hamburg, Germany, June 15 – 16, 2023

Outline of the talk

- Project recall
- Preliminary training
- Synthetic dataset for training and results of the training
- Sensitivity of the model in SNR and DM ranges.

Motivation of the project

Radio telescope name	Radio telescope exterior	Bitrate per beam	Total bitrate
Effolsborg		P210-7: 11.04 Gb /s	77 Gb / s (7)
Enersberg		UWB: 290 Gb / s	290 Gb / s (1)
MeerKAT		107 Mb / s	1.7 Tb / s (~1024 beams)
Square Kilometer Array	PP'	~ 1 Gb / s	20 Tb / s (>2200 beams)

Single dish radio astronomical data in a nutshell

Prototype model

Dataset for prototype training

Object: Crab pulsar (B0531+21) Data: 2020-05-31 Time resolution: 0.1024 ms Telescope: Effelsberg Number of subintergations: 50 000 Number of labeled subintergations: 30 000

Preliminary classes for classification

7 / 22

Resampling original images

Accuracy of the prototype model

Real vs. synthetic

Included effects for pulses:

- Dispersion delay,
- Scattering,
- Spectra of a pulsar,

Background for synthetic data is uniform Gaussian noise.

Real pulse Fake pulse 0 0 50 -50 -100 -100 150 -150 200 -200 -250 -250 100 200 100 200 Fake pulse 100 200 0/22

https://github.com/KazAndr/prfi_generator

Real vs. synthetic

https://github.com/KazAndr/prfi_generator

Real vs. synthetic

https://github.com/KazAndr/prfi_generator

12 / 22

Accuracy of the model trained on synthetic data

20

20

13 / 22

Class	sificati	on of	real d	ata
Label	Accuracy	Recall	Precision	F1-Score
Pulse	0.99	0.28	0.48	0.35
NBRFI	0.72	0.47	0.98	0.64
BBRFI	1.00	0.09	0.26	0.13
None	0.71	1.00	0.62	0.77

Classification of real data

Classification of real data

Classification of real data (mixed classes)

Classification of real data

Signal-to-Noise Ratios (SNR) to which the model is sensitive

on the resolution of the input

0

19/22

50

100

150

SNR

200

250

image.

16.2

16.4

18.7

Signal-to-Noise Ratios (SNR) to which the model is sensitive

Dispersion measures to which the model is sensitive

To train the model, synthetically pulses of a pulsar with a dispersion measure of 56.758 (the dispersion measure of a pulsar in the Crab Nebula) were used. However, after analyzing the sensitivity of the model to pulses with different measures of dispersion (5 - 500 pc cm-3), it was obtained that the model trained on pulses with one measure of dispersion remains sensitive to some fairly wide range of DM.

Conclusions

- A program for generating synthetic pulses of pulsars and synthetic radio frequency interferences has been developed.
- A prototype deep-learning model was trained on a sample of synthetic pulses and radio frequency interferences.
- The model exhibits 100% efficiency for pulses with a Signal-to-Noise Ratio (SNR) greater than 18.
- It is shown that the prototype model trained on synthetic pulses with a measure of the dispersion of 57.758 pc cm-3 is able to classify as a pulse, pulses in a sufficiently wide range from the above measure of dispersion.
- Testing on real data has shown that the prototype is quite successful in classifying the corresponding data.