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ML in HEP: a growing field

• Inspire search for ("machine learning" or "deep learning" or "neural") 
and (hep-ex or hep-ph or hep-th)

• 420 papers in 2022, 170 so far in 2023
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• Learning New Physics from a Machine [DOI]

• Anomaly Detection for Resonant New Physics with Machine Learning [DOI]

• Extending the search for new resonances with machine learning [DOI]

• Learning Multivariate New Physics [DOI]

• Searching for New Physics with Deep Autoencoders [DOI]

• QCD or What? [DOI]

• A robust anomaly finder based on autoencoder

• Variational Autoencoders for New Physics Mining at the Large Hadron Collider [DOI]

• Adversarially-trained autoencoders for robust unsupervised new physics searches [DOI]

• Novelty Detection Meets Collider Physics [DOI]

• Guiding New Physics Searches with Unsupervised Learning [DOI]

• Does SUSY have friends? A new approach for LHC event analysis [DOI]

• Nonparametric semisupervised classification for signal detection in high energy physics

• Uncovering latent jet substructure [DOI]

• Simulation Assisted Likelihood-free Anomaly Detection [DOI]

• Anomaly Detection with Density Estimation [DOI]

• A generic anti-QCD jet tagger [DOI]

• Transferability of Deep Learning Models in Searches for New Physics at Colliders [DOI]

• Use of a Generalized Energy Mover’s Distance in the Search for Rare Phenomena at Colliders 
[DOI]

• Adversarially Learned Anomaly Detection on CMS Open Data: re-discovering the top quark [DOI]

• Dijet resonance search with weak supervision using 13 TeV pp collisions in the ATLAS detector 
[DOI]

• Learning the latent structure of collider events [DOI]

• Finding New Physics without learning about it: Anomaly Detection as a tool for Searches at 
Colliders [DOI]

• Tag N’ Train: A Technique to Train Improved Classifiers on Unlabeled Data [DOI]

• Variational Autoencoders for Anomalous Jet Tagging

• Anomaly Awareness

• Unsupervised Outlier Detection in Heavy-Ion Collisions

• Decoding Dark Matter Substructure without Supervision

• Mass Unspecific Supervised Tagging (MUST) for boosted jets [DOI]

• Simulation-Assisted Decorrelation for Resonant Anomaly Detection

• Anomaly Detection With Conditional Variational Autoencoders

• Unsupervised clustering for collider physics

• Combining outlier analysis algorithms to identify new physics at the LHC

• Quasi Anomalous Knowledge: Searching for new physics with embedded knowledge

• Uncovering hidden patterns in collider events with Bayesian probabilistic models

• Unsupervised in-distribution anomaly detection of new physics through conditional density 
estimation

• The LHC Olympics 2020: A Community Challenge for Anomaly Detection in High Energy Physics

• Model-Independent Detection of New Physics Signals Using Interpretable Semi-Supervised 
Classifier Tests

• Topological Obstructions to Autoencoding

• Unsupervised Event Classification with Graphs on Classical and Photonic Quantum Computers

• Bump Hunting in Latent Space

• Comparing Weak- and Unsupervised Methods for Resonant Anomaly Detection

• Better Latent Spaces for Better Autoencoders

• Autoencoders for unsupervised anomaly detection in high energy physics

• Via Machinae: Searching for Stellar Streams using Unsupervised Machine Learning

• Anomaly detection with Convolutional Graph Neural Networks

• Anomalous Jet Identification via Sequence Modeling

• The Dark Machines Anomaly Score Challenge: Benchmark Data and Model Independent Event 
Classification for the Large Hadron Collider

• RanBox: Anomaly Detection in the Copula Space

• Rare and Different: Anomaly Scores from a combination of likelihood and out-of-distribution 
models to detect new physics at the LHC

• LHC physics dataset for unsupervised New Physics detection at 40 MHz

• New Methods and Datasets for Group Anomaly Detection From Fundamental Physics

• The Data-Directed Paradigm for BSM searches

• Autoencoders on FPGAs for real-time, unsupervised new physics detection at 40 MHz at the Large 
Hadron Collider

• Classifying Anomalies THrough Outer Density Estimation (CATHODE)

• Deep Set Auto Encoders for Anomaly Detection in Particle Physics

• Challenges for Unsupervised Anomaly Detection in Particle Physics

• Improving Variational Autoencoders for New Physics Detection at the LHC with Normalizing Flows

• Signal-agnostic dark matter searches in direct detection data with machine learning

• Anomaly detection from mass unspecific jet tagging

• A method to challenge symmetries in data with self-supervised learning

• Stressed GANs snag desserts, a.k.a Spotting Symmetry Violation with Symmetric Functions

• Online-compatible Unsupervised Non-resonant Anomaly Detection

• Event-based anomaly detection for new physics searches at the LHC using machine learning

• Learning New Physics from an Imperfect Machine

• Autoencoders for Semivisible Jet Detection

• Anomaly detection in high-energy physics using a quantum autoencoder

• Creating Simple, Interpretable Anomaly Detectors for New Physics in Jet Substructure

• Taming modeling uncertainties with Mass Unspecific Supervised Tagging

• What’s Anomalous in LHC Jets?

• Quantum Anomaly Detection for Collider Physics

• Self-supervised Anomaly Detection for New Physics

• Data-directed search for new physics based on symmetries of the SM [DOI]

• CURTAINs for your Sliding Window: Constructing Unobserved Regions by Transforming Adjacent 
Intervals

• Learning new physics efficiently with nonparametric methods

• '’Flux+Mutability’’: A Conditional Generative Approach to One-Class Classification and Anomaly 
Detection

• Boosting mono-jet searches with model-agnostic machine learning [DOI]

• Event Generation and Density Estimation with Surjective Normalizing Flows

• A Normalized Autoencoder for LHC Triggers

• Mixture-of-theories Training: Can We Find New Physics and Anomalies Better by Mixing Physical 
Theories?

• Neural Embedding: Learning the Embedding of the Manifold of Physics Data

• Null Hypothesis Test for Anomaly Detection

• Resonant anomaly detection without background sculpting

• Anomaly Detection under Coordinate Transformations

• Quantum-probabilistic Hamiltonian learning for generative modelling \& anomaly detection

• Efficiently Moving Instead of Reweighting Collider Events with Machine Learning

• Nanosecond anomaly detection with decision trees for high energy physics and real-time 
application to exotic Higgs decays

• The Mass-ive Issue: Anomaly Detection in Jet Physics

Anomaly detection section in the 
HEP-ML Living Review
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https://iml-wg.github.io/HEPML-LivingReview
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What are anomalies?
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R. Foorthuis, On the nature and types of anomalies: a review of 
deviations in data

Wikipedia: Anomaly detection



Outliers, or point anomalies
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Individual examples are far away from the
regular distribution

Examples:   
  
• Detector malfunctions
• Background-free search



Group anomalies
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mass

co
u

n
tsIndividual examples in themselves 

are normal/uninteresting, but as 
a group they form an interesting 
entity.

Examples:
• New physics searches, e.g. 

resonances
• Excess in time series



New physics searches at the LHC

• We know there must be
new physics beyond the
Standard Model

• New physics could show up
as anomalies in the data

• The experiments at the
LHC have set many limits
on popular models of
new physics, but so far no
discoveries
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Anomaly detection methods I

• Most searches at the LHC:
• Simulate signal and background

• Optimize search strategy based on this

• Maximally model dependent

• Some searches:
• Signal clear but background messy

• Simulate signal

• Compare against data

2023-06-15 Anna Hallin, Inst. for Exp. Physics, University of Hamburg 8
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Model space is big

• A search at the LHC is a long process. 
Can we cover all possible models with 
dedicated searches? Probably not.

• We want to complement the dedicated 
searches with more model agnostic 
searches. 
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Anomaly detection methods II

• Signal model independent:
• Simulate background

• Directly compare data vs simulation
over several final states

• Model ”agnostic” or ”independent”:
• Does not assume a specific signal

model

• Does not rely on simulations

• Does make assumptions about signal
shape or optimal features to search in
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2001.04990



Anomaly detection methods II

• Signal model independent:
• Simulate background

• Directly compare data vs simulation
over several final states

• Model ”agnostic” or ”independent”:
• Does not assume a specific signal

model

• Does not rely on simulations

• Does make assumptions about signal
shape or optimal features to search in

2023-06-15 Anna Hallin, Inst. for Exp. Physics, University of Hamburg 12

2001.04990



Anomaly detection methods II

• Signal model independent:
• Simulate background

• Directly compare data vs simulation
over several final states

• Model ”agnostic” or ”independent”:
• Does not assume a specific signal

model

• Does not rely on simulations

• Does make assumptions about signal
shape or optimal features to search in
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Will focus on this type
in the rest of the talk

2001.04990



Supervision or not?

• Supervised: labelled data
• Example: anti-QCD tagging

J. A. Aguilar-Saavedra, J. H. Collins, and R. K. Mishra, 1709.01087
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Supervision or not?

• Supervised: labelled data
• Example: anti-QCD tagging

J. A. Aguilar-Saavedra, J. H. Collins, and R. K. Mishra, 1709.01087

• Unsupervised: unlabelled data
• Example: autoencoders

D. P. Kingma and M. Welling: Auto-encoding variational bayes; An introduction to variational autoencoders

• Weakly supervised: Imperfect or noisy labels
• Example: Classification WithOut Labels (CWoLa)

E. M. Metodiev, B. Nachman, and J. Thaler, Classfication without labels: Learning from mixed samples in high energy 
physics, 1708.02949

• Example: Classifying Anomalies THrough Outer Density Estimation (CATHODE)
A. Hallin, J. Isaacson, G. Kasieczka, C. Krause, B. Nachman, T. Quadfasel, M. Schlaffer, D. Shih, M. Sommerhalder, 
Classifying Anomalies THrough Outer Density Estimation (CATHODE), 2109.00546
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Autoencoders

• Unsupervised

• Lossy encoder

• Reconstruct via decoder

• Measure reconstruction loss

• Idea: the reconstruction loss will be 
higher for unusual event types
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1808.08992



Autoencoders: complexity bias

• What if the signal has a less complex 
shape than the background?

• Reconstruction loss will not be a good 
measure

2023-06-15 Anna Hallin, Inst. for Exp. Physics, University of Hamburg 18
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Autoencoders: complexity bias

• What if the signal has a less complex 
shape than the background?

• Reconstruction loss will not be a good 
measure

• 2105.05735 and 2206.14225 use 
normalized autoencoders, which 
helps avoid this issue.

”The reconstruction error is re-interpreted as an energy 
function, and defines a probabilistic model from an 
autoencoder. During maximum likelihood learning of 
NAE, outlier reconstruction is naturally suppressed by 
enforcing the normalization constraint”
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Weak supervision: mixed samples

• We do not know or assume the 
distribution of the signal

• Sample M1 and M2 both contain
signal and background, but with 
different proportions

• Label M1 and M2 

• Optimality in classifying M1 vs M2
→ optimality in classifying S vs B

• Let M1 = data, M2 = background

• How do we find the background?
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Weak supervision: CWoLa

• Scan over a variable where the signal
is assumed to be localized, for example
a mass.

2023-06-15 Anna Hallin, Inst. for Exp. Physics, University of Hamburg 21

2010.14554



Weak supervision: CWoLa

• Scan over a variable where the signal
is assumed to be localized, for example
a mass.

• Assume                                              .
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Weak supervision: CWoLa

• Scan over a variable where the signal
is assumed to be localized, for example
a mass.

• Assume                                              .
Train a classifier on the other features
to distinguish between events in the 
signal region and the sidebands.
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Weak supervision: CWoLa

• Scan over a variable where the signal
is assumed to be localized, for example
a mass.

• Assume                                              .
Train a classifier on the other features
to distinguish between events in the 
signal region and the sidebands.

• If the training features are correlated
with the search feature, the approach
collapses.
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Weak supervision: CATHODE

• Define wide sidebands in the search variable 
and train a density estimator on auxiliary 
variables in this region.

2023-06-15 Anna Hallin, Inst. for Exp. Physics, University of Hamburg 25
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Train density 
estimator here



Weak supervision: CATHODE

• Define wide sidebands in the search variable 
and train a density estimator on auxiliary 
variables in this region.

• The density estimator in CATHODE is a 
normalizing flow. Normalizing flows learn an 
invertible map     between the feature  space 
with distribution             and a latent space with 
distribution            , such that                 . 
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Weak supervision: CATHODE

• Define wide sidebands in the search variable 
and train a density estimator on auxiliary 
variables in this region.

• Use the learned probability distribution to 
sample ”background” in the SR.
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Weak supervision: CATHODE

• Define wide sidebands in the search variable 
and train a density estimator on auxiliary 
variables in this region.

• Use the learned probability distribution to 
sample ”background” in the SR.

• Train a classifier to distinguish between 
samples (”background”) and data.
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2109.00546
Train here

Sample here



Weak supervision: pitfalls

• Noisy features degrade performance
• Need to be careful with feature selection

• Hence not completely ”model independent”
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Weak supervision: pitfalls

• Noisy features degrade performance
• Need to be careful with feature selection

• Hence not completely ”model independent”
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• Possible background sculpting
• If there are strongly correlated features, this can 

happen after a cut on the anomaly score
• CATHODE’s performance restored when 

performing the classification in the latent space of 
the normalizing flow (LaCATHODE)

2210.14924



Example results from analyses

• ATLAS Dijet resonance search with 
weak supervision (CWoLa)

• 2D feature space (masses of the two
jets): CWoLa correctly identifies the 
signal

2023-06-15 Anna Hallin, Inst. for Exp. Physics, University of Hamburg 31
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Example results from analyses

• ATLAS Dijet resonance search with 
weak supervision (CWoLa)

• 2D feature space (masses of the two
jets): CWoLa correctly identifies the 
signal

• “For certain masses, these limits are 
up to 10 times more sensitive than 
those obtained by the inclusive dijet 
search”
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Example results from analyses

• CATHODE: particle physics analysis is currently being performed... stay 
tuned!
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Example results from analyses

• CATHODE: particle physics analysis is currently being performed... stay 
tuned!

• We are also using it in space!
• Stellar streams are streams of stars that

the Milky Way has pulled from other 
stellar bodies

• All stars in a stream travel in the same
direction (background stars do not)

• They all have the same origin → similar
color and magnitude

• They are anomalies! 
• Currently using CATHODE to find 

new streams.
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What about the trigger level?

• Active research field

• Challenge: needs to be fast

2023-06-15 Anna Hallin, Inst. for Exp. Physics, University of Hamburg 35



Summary and outlook

• There are many different types of anomalies

• Group anomalies are studied in the context of searches for new 
physics

• Anomaly detection can be more or less model dependent

• ML methods for Anomaly detection vary in the level of supervision

• Example of unsupervised approaches: autoencoders

• Examples of weak supervision: CWoLa, CATHODE

• Different methods are currently being implemented in real data
analyses, results to come
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