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ML in HEP: a growing field

* Inspire search for ("machine learning" or "deep learning" or "neural")
and (hep-ex or hep-ph or hep-th)

* 420 papersin 2022, 170 so far in 2023

1992 2023



Learning New Physics from a Machine [DOI]

Anomaly Detection for Resonant New Physics with Machine Learning [DOI]

Extending the search for new resonances with machine learning [DOI]

Learning Multivariate New Physics [DOI]

Searching for New Physics with Deep Autoencoders [DOI]

QCD or What? [DOI]

A robust anomaly finder based on autoencoder

Variational Autoencoders for New Physics Mining at the Large Hadron Collider [DOI]

Adversarially-trained autoencoders for robust unsupervised new physics searches [DOI]

Novelty Detection Meets Collider Physics [DOI]

Guiding New Physics Searches with Unsupervised Learning [DOI]

Does SUSY have friends? A new approach for LHC event analysis [DOI]

Nonparametric semisupervised classification for signal detection in high energy physics

Uncovering latent jet substructure [DOI]

Simulation Assisted Likelihood-free Anomaly Detection [DOI]

Anomaly Detection with Density Estimation [DOI]

A generic anti-QCD jet tagger [DOI]

Transferability of Deep Learning Models in Searches for New Physics at Colliders [DOI]

Use of a Generalized Energy Mover’s Distance in the Search for Rare Phenomena at Colliders
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Adversarially Learned Anomaly Detection on CMS Open Data: re-discovering the top quark [DOI]

I[Dijce)t]resonance search with weak supervision using 13 TeV pp collisions in the ATLAS detector
DOI

Learning the latent structure of collider events [DOI]

Finding New Physics without learning about it: Anomaly Detection as a tool for Searches at
Colliders [DOI]

Tag N’ Train: A Technigue to Train Improved Classifiers on Unlabeled Data [DOI]

Variational Autoencoders for Anomalous Jet Tagging

Anomaly Awareness

Unsupervised Outlier Detection in Heavy-lon Collisions

Decoding Dark Matter Substructure without Supervision

Mass Unspecific Supervised Tagging (MUST) for boosted jets [DOI]

Simulation-Assisted Decorrelation for Resonant Anomaly Detection

Anomaly Detecti ith, Congliti Variational Autoencoders

Unsupervised clustering for collider physics

Combining outlier analysis algorithms to identify new physics at the LHC

Quasi Anomalous Knowledge: Searching for new physics with embedded knowledge

Uncovering hidden patterns in collider events with Bayesian probabilistic models

Unsupervised in-distribution anomaly detection of new physics through conditional density
estimation

The LHC Olympics 2020: A Community Challenge for Anomaly Detection in High Energy Physics

Model-Independent Detection of New Physics Signals Using Interpretable Semi-Supervised
Classifier Tests

Topological Obstructions to Autoencoding

Unsupervised Event Classification with Graphs on Classical and Photonic Quantum Computers

Bump Hunting in Latent Space

Comparing Weak- and Unsupervised Methods for Resonant Anomaly Detection

Better Latent Spaces for Better Autoencoders

Autoencoders for unsupervised anomaly detection in high energy physics

Via Machinae: Searching for Stellar Streams using Unsupervised Machine Learning

Anomaly detection with Convolutional Graph Neural Networks

Anomalous Jet Identification via Sequence Modeling

The Dark Machines Anomaly Score Challenge: Benchmark Data and Model Independent Event
Classification for the Large Hadron Collider

RanBox: Anomaly Detection in the Copula Space

Rare and Different: Anomaly Scores from a combination of likelihood and out-of-distribution
models to detect new physics at the LHC

LHC physics dataset for unsupervised New Physics detection at 40 MHz

New Methods and Datasets for Group Anomaly Detection From Fundamental Physics

The Data-Directed Paradigm for BSM searches

Autoencodezs on FPGAs for real-time, unsupervised new physics detection at 40 MHz at the Large
Hadron Collider

Classifying Anomalies THrough Outer Density Estimation (CATHODE)

Deep Set Auto Encoders for Anomaly Detection in Particle Physics

Challenges for Unsupervised Anomaly Detection in Particle Physics

Improving Variational Autoencoders for New Physics Detection at the LHC with Normalizing Flows

Signal-agnostic dark matter searches in direct detection data with machine learning

Anomaly detection from mass unspecific jet tagging

A method to challenge symmetries in data with self-supervised learning

Stressed GANs snag desserts, a.k.a Spotting Symmetry Violation with Symmetric Functions

Anna Hallin, Inst. for Exp. Physics, University of Hamburg

Online-compatible Unsupervised Non-resonant Anomaly Detection

Event-based anomaly detection for new physics searches at the LHC using machine learning

Learning New Physics from an Imperfect Machine

Autoencoders for Semivisible Jet Detection

Anomaly detection in high-energy physics using a quantum autoencoder

Creating Simple, Interpretable Anomaly Detectors for New Physics in Jet Substructure

Taming modeling uncertainties with Mass Unspecific Supervised Tagging

What’s Anomalous in LHC Jets?

Quantum Anomaly Detection for Collider Physics

Self-supervised Anomaly Detection for New Physics

Data-directed search for new physics based on symmetries of the SM [DOI]

ICURTAIINs for your Sliding Window: Constructing Unobserved Regions by Transforming Adjacent
ntervals

Learning new physics efficiently with nonparametric methods

"Flux+Mutability’’: A Conditional Generative Approach to One-Class Classification and Anomaly
Detection

Boosting mono-jet searches with model-agnostic machine learning [DOI]

Event Generation and Density Estimation with Surjective Normalizing Flows

A Normalized Autoencoder for LHC Triggers

l\llhixture»gf—theories Training: Can We Find New Physics and Anomalies Better by Mixing Physical
Theories?

Neural Embedding: Learning the Embedding of the Manifold of Physics Data

Null Hypothesis Test for Anomaly Detection

Resonant anomaly detection without background sculpting

Anomaly Detection under Coordinate Transformations

uantum-probabilistic Hamiltonian learning for generative modelling \& anomaly detection

Efficiently Moving Instead of Reweighting Collider Events with Machine Learning

Nanosecond anomaly detection with decision trees for high energy physics and real-time
application to exotic Higgs decays

The Mass-ive Issue: Anomaly Detection in Jet Physics

Anomaly detection section in the
HEP-ML Living Review

https://iml-wg.github.io/HEPML-LivingReview
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What are anomalies?

Types of Data

Legend
ooe object
©Ge Anomalous point or object
00000 Independent data

« An outlier is an observation which deviates so much from the other observations as
to arouse suspicions that it was generated by a different mechanism. /2!

¢ Anomalies are instances or collections of data that occur very rarely in the data set
and whose features differ significantly from most of the data.

¢ An outlier is an observation (or subset of observations) which appears to be
inconsistent with the remainder of that set of data.l

* An anomaly is a point or collection of points that is relatively distant from other points
in multi-dimensional space of features.

¢ Anomalies are patterns in data that do not conform to a well defined notion of normal
behaviour.[!]

e Let T be observations from a univariate Gaussian distribution and O a point from T.
Then the z-score for O is greater than a pre-selected threshold if and only if O is an
outlier.

Wikipedia: Anomaly detection

2023-06-15

Quantitative attributes

Qualitative attributes

Mixed attributes

00000 Dependent data

Type I: Uncommon number anomaly Type Il: Uncommon class anomaly Type lil: Simple mixed data anomaly
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R. Foorthuis, On the nature and types of anomalies: a review of

deviations in data

Anna Hallin, Inst. for Exp. Physics, University of Hamburg




Outliers, or point anomalies

Individual examples are far away from the
regular distribution

Examples:

e Detector malfunctions
* Background-free search

2023-06-15 Anna Hallin, Inst. for Exp. Physics, University of Hamburg



Group anomalies

Individual examples in themselves %
are normal/uninteresting, but as §
a group they form an interesting ©
entity.
Examples:
* New physics searches, e.g.

resonances

e Excess in time series

2023-06-15 Anna Hallin, Inst. for Exp. Physics, University of Hamburg



New physics searches at the LHC

BIG ROCK /5 MOST

* We know there must be e~
new physics beyond the
Standard Model

* New physics could show up
as anomalies in the data

* The experiments at the
LHC have set many limits
on popular models of = B = —
new physics, but so far no n s - 0
discoveries P " |

smbc-comics.com =N : =

2023-06-15 Anna Hallin, Inst. for Exp. Physics, University of Hamburg 7



Anomaly detection methods |

* Most searches at the LHC:

e Simulate signal and background
* Optimize search strategy based on this
* Maximally model dependent

e Some searches:

* Signal clear but background messy

e Simulate signal

 Compare against data

2023-06-15

background (SM) model independence

autoencoders
Some searches | DA
(frain signal ANODE
versus daia) CWol a

SALAD

Most searches
(train with
simulations)

MUSIC (CMS),
General Search
(ATLAS)

Anna Hallin, Inst. for Exp. Physics, University of Hamburg
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signal model independence



Anomaly detection methods |

* Most searches at the LHC:

e Simulate signal and background % 4
* Optimize search strategy based on this ;ﬁ Some searches a'-”“fgiﬂ’“e“-*
* Maximally model dependent E éEEL'SfI;TEE'J o

o SALAD

~

/
=3
. [ ]
Some searches: 2 | Mostsearches wusic (cms),
. c - : . O
* Signal clear but background messy 3 ,("a'lnt‘f‘*’“h) Ge"EirTﬂ'L;ef}am
o simulations S)
* Simulate signal S
L
 Compare against data >
\ P g / signal model independence

2023-06-15 Anna Hallin, Inst. for Exp. Physics, University of Hamburg



Model space is big

* A search at the LHC is a long process.
Can we cover all possible models with
dedicated searches? Probably not.

* We want to complement the dedicated
searches with more model agnostic
searches.

2023-06-15 Anna Hallin, Inst. for Exp. Physics, University of Hamburg 10



Anomaly detection methods |l

A

* Simulate background

* Directly compare data vs simulation

_ over several final states

Signal model independent:

~

)

* Model "agnostic” or ”“independent”:

* Does not assume a specific signal

model

* Does not rely on simulations
* Does make assumptions about signal

shape or optimal features to search in

2023-06-15

>

ependence

background (SM) mode/

autoencoders
Some searches | DA
(frain signal ANODE
versus daia) CWol a

SALAD

Most searches
(train with
simulations)

MUSIC (CMS),
General Search
(ATLAS)

>

Anna Hallin, Inst. for Exp. Physics, University of Hamburg

signal model independence
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Anomaly detection methods |

 Signal model independent:
* Simulate background

* Directly compare data vs simulation
over several final states

(I\/Iodel ”agnostic” or ”independent”:\

* Does not assume a specific signal
model

* Does not rely on simulations

model independence

>

Some searches
(train signal
versus data)

—

Most searches
(train with
simulations)

background {SX\}

autoencoders
LDA
ANODE
CWola
\_ SALAD )

MUSIC (CMS),
General Search

(ATLAS)

>

* Does make assumptions about signal
k shape or optimal features to search iry

signal model independence

2023-06-15 Anna Hallin, Inst. for Exp. Physics, University of Hamburg
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Anomaly detection methods |

Will focus on this type
in the rest of the talk

 Signal model independent:

e Simulate background 4 - ~
* Directly compare data vs simulation some searches |
over several final states (train signal ANODE
versus data) CWol a
\_ SALAD )

* Model "agnostic” or ”“independent”:

Most searches  MUSIC (CMS),

background (SM) model independence

* Does not assume a specific signal (train with  General Search
model simulations) (ATLAS)
* Does not rely on simulations >

signal model independence

* Does make assumptions about signal
shape or optimal features to search in

2023-06-15 Anna Hallin, Inst. for Exp. Physics, University of Hamburg 13



Supervision or not?

e Supervised: labelled data

* Example: anti-QCD tagging
J. A. Aguilar-Saavedra, J. H. Collins, and R. K. Mishra, 1709.01087
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Supervision or not?

e Supervised: labelled data
* Example: anti-QCD tagging

J. A. Aguilar-Saavedra, J. H. Collins, and R. K. Mishra, 1709.01087

e Unsupervised: unlabelled data

* Example: autoencoders
D. P. Kingma and M. Welling: Auto-encoding variational bayes; An introduction to variational autoencoders

* Weakly supervised: Imperfect or noisy labels
e Example: Classification WithOut Labels (CWoLla)

E. M. Metodiev, B. Nachman, and J. Thaler, Classfication without labels: Learning from mixed samples in high energy
physics, 1708.02949

* Example: Classifying Anomalies THrough Outer Density Estimation (CATHODE)

A. Hallin, J. Isaacson, G. Kasieczka, C. Krause, B. Nachman, T. Quadfasel, M. Schlaffer, D. Shih, M. Sommerhalder,
Classifying Anomalies THrough Outer Density Estimation (CATHODE), 2109.00546



Autoencoders

* Unsupervised

b

* Lossy encoder

e Reconstruct via decoder
* Measure reconstruction loss

e |dea: the reconstruction loss will be
higher for unusual event types

Encoder

Decoder +
4
QCD
1.0 t
g (400 GeV)
0.8
0.6
0.4
0.2
0.0
1077 10-° 1073 10-4

Reconstruction Error




Autoencoders: complexity bias

 What if the signal has a less complex
shape than the background?

* Reconstruction loss will not be a good
measure :

2023-06-15 Anna Hallin, Inst. for Exp. Physics, University of Hamburg
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Autoencoders: complexity bias

 What if the signal has a less complex
shape than the background?

* Reconstruction loss will not be a good
measure

e 2105.05735 and 2206.14225 use
normalized autoencoders, which
helps avoid this issue.

"The reconstruction error is re-interpreted as an energy
function, and defines a probabilistic model from an
autoencoder. During maximum likelihood learning of
NAE, outlier reconstruction is naturally suppressed by
enforcing the normalization constraint”

MNIST FMNIST
s

]
------

Half 4
Blank Omniglot Half 5 Half 0




Weak supervision: mixed samples

* We do not know or assume the
distribution of the signal

* Sample M, and M, both contain
signal and background, but with
different proportions

* Label M, and M,

* Optimality in classifying M, vs M,
— optimality in classifying S vs B

* Let M, = data, M, = background
* How do we find the background?

Mixed Sample 1

90000

OeOO®
©OG®®
90161616

@000

\o

Classifier




Weak supervision: CWola

* Scan over a variable where the signal
is assumed to be localized, for example
almass.

Other features

2023-06-15 Anna Hallin, Inst. for Exp. Physics, University of Hamburg 21



Weak supervision: CWola

* Scan over a variable where the signal
is assumed to be localized, for example
almass.

e
e Assume!Pog.sr(M,X)!=|Pdata.sB(M,X)

AR R N R N N g

Sidebands

Other features

2023-06-15 Anna Hallin, Inst. for Exp. Physics, University of Hamburg 22



Weak supervision: CWola

* Scan over a variable where the signal
is assumed to be localized, for example
almass.

g )}
* Assume | Pvg,sr(1M,; X)I=|Pdata,sB (1M, X) |
Train a classifier on the|other features
to distinguish between events in the

signal region and the sidebands.

Sidebands

Other features

2023-06-15 Anna Hallin, Inst. for Exp. Physics, University of Hamburg




Weak supervision: CWola

* Scan over a variable where the signal
is assumed to be localized, for example
almass.

g )}
* AssumePug.sr(M, X)i=|Pdata,s (M, X)
Train a classifier on the|other features
to distinguish between events in the

signal region and the sidebands.

* If the training features are correlated
with the search feature, the approach
collapses.

(@
o i
@

®e
@0
clolclolon

(ClolOl0)
@GO
010
010

®@

@ A frm————
= 1 Signal 1
S _—Lregion
Z
O
p— N I background
Si >
1aebands signal \4/
>
Mres

2023-06-15 Anna Hallin, Inst. for Exp. Physics, University of Hamburg

Other features

24



Weak supervision: CATHODE

* Define wide sidebands in the search variable
and train a density estimator on auxiliary
variables in this region.

r [ E /
. i SR ,
Pdata(z|m ¢ SB) ,
= ppg(z|mfe SB) data

>
>

SB m

Pdata(z|m € SB)

' S
5 €i) = prg(x|lm € SB)

Train density
estimator here

2023-06-15 Anna Hallin, Inst. for Exp. Physics, University of Hamburg 25



Weak supervision: CATHODE

* Define wide sidebands in the search variable
and train a density estimator on auxiliary
variables in this region.

* The density estimator in CATHODE is a
normalizing flow. Normalizing flows learn an
invertible map f between the feature space
with distribution px (x)and a latent space with
distribution pz(z), such that z = f(x). [

1l

S § SR SB m

Paasalzlm § SB) -
= prg(z/mfe SB) Pastay
EEE— e
z = f(x)
— —

¥ _ Train density
pz(2) px (x) estimator here

Pdata(z|m € SB)

o € o) = prg(x|lm € SB)

2023-06-15 Anna Hallin, Inst. for Exp. Physics, University of Hamburg 26



Weak supervision: CATHODE

* Define wide sidebands in the search variable
and train a density estimator on auxiliary
variables in this region.

* Use the learned probability distribution to
sample "background” in the SR.

M ST,

SB SB m

Pdata(|m € SB)
= ppg(z|m € SB)

Pdata(|m €[SB)
= ppg(z|m ¢ SB)

Train here
Sample here

2023-06-15 Anna Hallin, Inst. for Exp. Physics, University of Hamburg 27



Weak supervision: CATHODE

* Define wide sidebands in the search variable
and train a density estimator on auxiliary
variables in this region.

* Use the learned probability distribution to
sample "background” in the SR.

* Train a classifier to distinguish between

124 7 E
samples ("background”) and data. f \ o
\\ ///// SB | | SBm
Pdata(|m €[SB) Pdata(|m € SB)
Mixed Sample 2 Mixed Sample | = ppg(z|m ¢ SB) Pdat T i) = ppg(z|m € SB)
00000 | (00006
0000 | |06
00000 | |6
0000 | |06 .
00000 | |®O6O6 Train here

Sample here

2023-06-15 Anna Hallin, Inst. for Exp. Physics, University of Hamburg 28



Weak supervision: pitfalls

* Noisy features degrade performance
* Need to be careful with feature selection
* Hence not completely “"model independent”

.4 . e Random
—— Default, val loss = 0.69277+0.00002
14 —— 1G, val loss = 0.69302+0.00005
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Weak supervision: pitfalls

* Noisy features degrade performance * Possible background sculpting

* Need to be careful with feature selection * If there are strongly correlated features, this can
* Hence not completely “model independent” happen after a cut on the anomaly score
e CATHODE’s performance restored when
performing the classification in the latent space of
the normalizing flow (LaCATHODE)
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Example results from analyses

10°

* ATLAS Dijet resonance search with Al A
weak supervision (CWola) = | ICGET|
» 2D feature space (masses of the two
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Example results from analyses

* ATLAS Dijet resonance search with
weak supervision (CWola)

» 2D feature space (masses of the two
jets): CWola correctly identifies the
signal

* “For certain masses, these limits are
up to 10 times more sensitive than
those obtained by the inclusive dijet
search”
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Example results from analyses

 CATHODE: particle physics analysis is currently being performed... stay
tuned!



Example results from analyses

 CATHODE: particle physics analysis is currently being performed... stay
tuned!

 We are also using it in space!

Stellar streams are streams of stars that
the Milky Way has pulled from other

stellar bodies

All stars in a stream travel in the same
direction (background stars do not)

They all have the same origin = similar

color and magnitude
They are anomalies!

Currently using CATHODE to find

new streams.
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What about the trigger level?
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Summary and outlook

* There are many different types of anomalies

* Group anomalies are studied in the context of searches for new
physics

* Anomaly detection can be more or less model dependent

ML methods for Anomaly detection vary in the level of supervision
* Example of unsupervised approaches: autoencoders

* Examples of weak supervision: CWola, CATHODE

* Different methods are currently being implemented in real data
analyses, results to come
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