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ATLAS LAr-Calorimeter

@ LHC provides = 50 proton-proton collisions per bunch
crossing (BC) = every 25ns = 40 MHz

@ 140-200 simultaneous collisions at High Luminosity LHC
(HL-LHC) from 2029 onwards

@ Higher pileup and higher trigger rate require replacement of LAr |l /
Calorimeter electronics - vgv ?ATLAS
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Digital energy reconstruction

e Digital energy reconstruction with Optimal Filter (OF) g Digitization at
5 s 40 MHz
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@ Overlapping signals require better algorithm o2 e
o Analc?g
@ 556 high-performance FPGAs will be installed for real-time Shaping
digital signal processing X
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Convolutional neural network

architecture (CNN)

Output
kernel =6
H Conv 2 dilation =3
- feature maps = 1
£ @ 2 convolutional layers using
E convi peel=7 ReLU activation for energy
feauremaps=7 reconstruction
Input @ ~ 100 parameters
to te t to . .
- o ~ 20 BC field of view
Field of View = 22 Bias
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Convolutional neural network architecture (CNN)

Energy Reconstruction

Tagging

Output
kernel =8
Conv 4 dilation = 1
kernel =5 H H
emel=s @ 2 convolutional layers using
Conv3 feature maps =4 - .
RelLU activation for energy
Concatenate reconstruction
_— @ =~ 100 parameters
o2 erne =7 o ~ 20 BC field of view
dilation = 1
@ 2 convolutional layers to tag
. kern -3 undershoot of previous pulses
onv 111 dilation = 1 R R ) . R
faturs maps -2 using sigmoid activation (— less
i - (FETTEERT hardware friendly)
tis ts ta ty to
Bias

Field of View = 20
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Example sequence
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@ Trained on signal-
enriched simulated
detector sequences
including pileup

@ True energy available
as training target

@ Network and Optimal
Filter performance can
be evaluated by
comparison with true
energy
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Energy reconstruction performance as a function of gap between 2 pulses
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— Improvements in reconstruction of overlapping pulses (gap < 20 BC)
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CNN performance for different detector regions
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* EMB Middle (1, ¢) = (0.5125,0.0125)

sﬂssio[a(‘n
@ Same architecture trained for different detector regions
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Decisions for firmware implementation

Low level High level
@ Allows more customized optimization @ More compact code )
Custom implementation Framework
@ More specialized /customizable @ More professional code
Separated architecture/weights Weight dependent structure

@ Weights can be loaded at runtime, no

recompilation necessary

i ] @ Allows pruning
e Easier structure of calculation (vector

multiplication)

Further considerations
e FPGA vendor/model dependence

@ Need for custom features?
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CNN firmware implementation

@ CNN inference implemented in VHDL

@ Model architecture configurable and automatically extracted
from Keras output files

@ Support multiplexing: Sof
Wi

@ Development on Intel Stratix-10 FPGA, final design will use Intel
Agilex Wi

@ Calculation in 18 bit fixed point numbers

@ DSP can be chained for vector multiplications |

W3+

(DspP
i}_i
&
S
DSP B
@ Intel DSPs can multiply two pairs of 18 bit numbers at once 52'@_0;
&
-
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Network size

Initial constraints:

Initial plan: Up to 512 detector cells per FPGA

FPGA-Model: Stratix 10 with 5720 DSPs — up to 11440 multipliers in 18 bit chained
mode

Input data arrives at 40 MHz, firmware planned to run at at least 320 MHz — can
process 10 detector cells cyclical

@ Worst case scenario requires 52 parallel neural network firmware instances

Can estimate possible network size based in available multipliers
— =2 100 parameters per network to leave some margin and resources for other systems

Constraints relaxed significantly now: 384 cells, 480 MHz (12x multiplexing) and larger
FPGA (Intel Agilex with 12792 DSPs)
— Can consider larger networks in the future
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LASP framework

LAr Signal Processor (LASP)

ORXx
Arrays

Ped Et
Sub N-tap FIR

FPGA

Ped Et
Sub N-tap FIR

Ped Et
Sub N-tap FIR
Ped

Sub

data buffers

Energy sums
Data reduction

controller |

fragment

builder
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CNNs to be embedded in larger firmware
project (LASP)

Existing framework provides easy setup
for simulation with UVVM checker and
compilation

Gitlab project with established workflow
Cl triggers automated checks of
simulations and lightweight compilation
for every merge request
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Firmware hierarchy

Layer 1

Layer 2

Layer 3

Johann C. Voigt

o Configuration generated from Keras files

@ Top module generates Filter modules
depending on architecture
— Network architecture flexible in code,
but fixed at compile time

@ Weights stored in RAM per Filter
instance
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DSP assignment

Output
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kernel =8
dilation = 1

kernel =5
dilation = 1
feature maps =4

kernel =7
dilation = 1

kernel =3
dilation = 1
feature maps =2
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CNN multiplexing concept

@ One FPGA needs to fit 33 CNN instances

@ Each instance uses 12x multiplexing
— Design needs to run at 12x the ADC frequency: 480 MHz
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CNN multiplexing concept

@ One FPGA needs to fit 33 CNN instances

@ Each instance uses 12x multiplexing
— Design needs to run at 12x the ADC frequency: 480 MHz
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Moving complexity to software

o Initially stored weigts in logical order like Keras
@ Timings of DSP chain require different order
— Significant ALM overhead for reordering of weights on FPGA
@ Optimized version reorders weights in software preprocessing — 68 % reduction in ALM

Optimization Remove Sigmoid
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FPGA resource estimation

@ Latency requirement by ATLAS trigger of ~ 150 ns met by all VHDL implementations

o All VHDL compilation targets can process required number of 384 detector cells
— E.g. 12-fold multiplexing with 33 parallel instances

@ Resource estimates based on Intel Quartus reports

FPGA Network Multiplexing  Detector cells  fiax ALMs DSPs
Stratix.10 2-Conv CNN 12 396 415 MHz 8% 28%
P 4.Conv CNN 12 396 481MHz  18% 27%
Acilex 2-Conv CNN 12 396 539 MHz 4% 13%
8 4-Conv CNN 12 396 549MHz 9% 12%
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Summary

@ CNNs outperform Optimal Filter, especially for overlapping
signals
— Study effect of new cell energy reconstruction on photon,
electron and jet measurements

o VHDL implementation of CNNs with low latency, fitting
target FPGA and can run at required clock frequency

@ Tests on FPGA hardware ongoing

@ Planning to release CNN code as open source in future
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Distribution of deviation from true energy
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Prediction in BCs without energy deposit
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Relative deviation between

Normalized to unity
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@ Good agreement between firmware and
software (for samples with pred. energy above
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