Machine Learning for Real-Time Processing of ATLAS Liquid Argon Calorimeter Signals with FPGAs

PUNCH4NFDI TA5 - XFEL Joint Workshop on Machine Learning and Data Processing on FPGAs

Johann C. Voigt

16 June 2023

Bundesministeriu für Bildung

und Forschung

ATLAS LAr-Calorimeter

- LHC provides ≈ 50 proton-proton collisions per bunch crossing (BC) $\widehat{=}$ every 25 ns $\widehat{=}$ 40 MHz
- 140-200 simultaneous collisions at High Luminosity LHC (HL-LHC) from 2029 onwards
- Higher pileup and higher trigger rate require replacement of LAr Calorimeter electronics

https://cds.cern.ch/record/2770815 [1], https://cds.cern.ch/record/1095928 [2], http://cds.cern.ch/record/1701107 [3]

ML on FPGA for Processing of LAr Calorimeter Signals

Digital energy reconstruction

• Digital energy reconstruction with Optimal Filter (OF)

$$E_t = \sum_{i=1}^5 c_i \cdot x_{t-i}$$

- Overlapping signals require better algorithm
- 556 high-performance FPGAs will be installed for real-time digital signal processing

http://cds.cern.ch/record/1701107 [3]

LHC Timeline

Convolutional neural network architecture (CNN)

- 2 convolutional layers using ReLU activation for energy reconstruction
- $\bullet \ \approx 100 \ \text{parameters}$
- $\bullet\,\approx\,20$ BC field of view

Convolutional neural network architecture (CNN)

- 2 convolutional layers using ReLU activation for energy reconstruction
- ullet pprox 100 parameters
- $\bullet\,\approx\,20$ BC field of view
- 2 convolutional layers to tag undershoot of previous pulses using sigmoid activation (→ less hardware friendly)

Example sequence

- Trained on signalenriched simulated detector sequences including pileup
- True energy available as training target
- Network and Optimal Filter performance can be evaluated by comparison with true energy

Energy reconstruction performance as a function of gap between 2 pulses

 \rightarrow Improvements in reconstruction of overlapping pulses (gap < 20 BC)

CNN performance for different detector regions

• Same architecture trained for different detector regions

Decisions for firmware implementation

High level		
• More compact code		
Framework		
• More professional code		
Weight dependent structure		
• Allows pruning		

- CNN inference implemented in VHDL
- Model architecture configurable and automatically extracted from Keras output files
- Support multiplexing:
- Development on Intel Stratix-10 FPGA, final design will use Intel Agilex
- Calculation in 18 bit fixed point numbers
- Intel DSPs can multiply two pairs of 18 bit numbers at once
- DSP can be chained for vector multiplications

Initial constraints:

- Initial plan: Up to 512 detector cells per FPGA
- $\bullet\,$ FPGA-Model: Stratix 10 with 5720 DSPs \rightarrow up to 11440 multipliers in 18 bit chained mode
- $\bullet\,$ Input data arrives at 40 MHz, firmware planned to run at at least 320 MHz $\to\,$ can process 10 detector cells cyclical
- Worst case scenario requires 52 parallel neural network firmware instances
- Can estimate possible network size based in available multipliers $ightarrow \approx 100$ parameters per network to leave some margin and resources for other systems
- Constraints relaxed significantly now: 384 cells, 480 MHz ($12 \times$ multiplexing) and larger FPGA (Intel Agilex with 12792 DSPs)
 - \rightarrow Can consider larger networks in the future

- CNNs to be embedded in larger firmware project (LASP)
- Existing framework provides easy setup for simulation with UVVM checker and compilation
- Gitlab project with established workflow
- CI triggers automated checks of simulations and lightweight compilation for every merge request

Firmware hierarchy

- Configuration generated from Keras files
- Top module generates *Filter* modules depending on architecture

 \rightarrow Network architecture flexible in code, but fixed at compile time

• Weights stored in RAM per *Filter* instance

DSP assignment

ML on FPGA for Processing of LAr Calorimeter Signals

CNN multiplexing concept

- One FPGA needs to fit 33 CNN instances
- Each instance uses $12 \times$ multiplexing
 - \rightarrow Design needs to run at $12\times$ the ADC frequency: 480 MHz

Example for two ADCs:

CNN multiplexing concept

- One FPGA needs to fit 33 CNN instances
- Each instance uses $12 \times$ multiplexing
 - \rightarrow Design needs to run at 12× the ADC frequency: 480 MHz

ADCs:

Moving complexity to software

- Initially stored weigts in logical order like Keras
- Timings of DSP chain require different order
 - \rightarrow Significant ALM overhead for reordering of weights on FPGA
- \bullet Optimized version reorders weights in software preprocessing \rightarrow 68 % reduction in ALM usage

Johann C. Voigt

ML on FPGA for Processing of LAr Calorimeter Signals

FPGA resource estimation

- \bullet Latency requirement by ATLAS trigger of $\approx 150\,\text{ns}$ met by all VHDL implementations
- All VHDL compilation targets can process required number of 384 detector cells \rightarrow E.g. 12-fold multiplexing with 33 parallel instances
- Resource estimates based on Intel Quartus reports

FPGA	Network	Multiplexing	Detector cells	$f_{ m max}$	ALMs	DSPs
Stratix-10	2-Conv CNN	12	396	415 MHz	8%	28 %
	4-Conv CNN	12	396	481 MHz	18%	27 %
Agilex	2-Conv CNN	12	396	539 MHz	4 %	13 %
	4-Conv CNN	12	396	549 MHz	9 %	12 %

• CNNs outperform Optimal Filter, especially for overlapping signals

 \rightarrow Study effect of new cell energy reconstruction on photon, electron and jet measurements

- VHDL implementation of CNNs with low latency, fitting target FPGA and can run at required clock frequency
- Tests on FPGA hardware ongoing
- Planning to release CNN code as open source in future

Backup

Distribution of deviation from true energy

Prediction in BCs without energy deposit

Relative deviation between firmware and software

 Good agreement between firmware and software (for samples with pred. energy above 240 MeV)

https://doi.org/10.1007/s41781-021-00066-y [4]

- [1] Sascha Mehlhase. ATLAS detector slice (and particle visualisations). 2021. URL: https://cds.cern.ch/record/2770815.
- Joao Pequenao. Computer generated image of the ATLAS Liquid Argon. CERN. Mar. 27, 2008. URL: https://cds.cern.ch/record/1095928 (visited on 03/29/2021).
- [3] ATLAS Collaboration. "Monitoring and data quality assessment of the ATLAS liquid argon calorimeter". In: JINST 9.arXiv:1405.3768. CERN-PH-EP-2014-045 (May 2014). Plot available separately: http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/LARG-2013-01/, P07024. 39 p. URL: http://cds.cern.ch/record/1701107 (visited on 05/28/2017).

[4] Georges Aad et al. "Artificial Neural Networks on FPGAs for Real-Time Energy Reconstruction of the ATLAS LAr Calorimeters". In: Computing and Software for Big Science 5.1 (Oct. 2021). DOI: 10.1007/s41781-021-00066-y. URL: https://doi.org/10.1007/s41781-021-00066-y.