Forward Physics at ATLAS for Astroparticle Physics

Yusuf Can Cekmecelioglu on behalf of the DESY ATLAS Forward Group

DESY Zeuthen Physics Retreat, 12.06.2023

Cosmic Rays and Astroparticle Physics

- Cosmic rays are relativistic nuclei (~90% proton)
- Creates secondary particle showers
 - Extensive Air Showers (EAS)
 - ✤ Mostly pions, kaons, etc.
 - EAS are dominated by soft-QCD interactions DESY.

- Makes indirect measurements by cherenkov lights
- Gamma-initiated vs nuclei-initiated showers

 π⁰ distribution relates the two
- Model predictions have large uncertainties

Cosmic Rays and Astroparticle Physics

- Cosmic rays are relativistic nuclei (~90% proton)
- Creates secondary particle showers
 - Extensive Air Showers (EAS)
 - ✤ Mostly pions, kaons, etc.
 - EAS are dominated by soft-QCD interactions DESY.

- Makes indirect measurements by cherenkov lights
- Gamma-initiated vs nuclei-initiated showers
 - π^0 distribution relates the two
- Model predictions have large uncertainties

Cosmic Rays and Astroparticle Physics

primary γ e⁺ e⁻ e⁺ e⁺ e⁺ e⁻ e⁺ e⁻ e⁻

- Cosmic rays are relativistic nuclei (~90% proton)
- Creates secondary particle showers
 - Extensive Air Showers (EAS)
 - ✤ Mostly pions, kaons, etc.
 - EAS are dominated by soft-QCD interactions DESY.

- Makes indirect measurements by cherenkov lights
- Gamma-initiated vs nuclei-initiated showers

 π⁰ distribution relates the two
- Model predictions have large uncertainties

Accelerator and Forward Physics

- Proton-proton collisions at LHC energy mimics EAS
- Soft-QCD events ~25-30% of total inelastic cross-section at LHC

Accelerator and Forward Physics

proton

LHCf: Energy spectra of forward neutral particles

LHCf: Energy spectra of forward neutral particles

ZDC (ATLAS Zero Degree Calorimeter): Detection of forward neutrons and photons

LHCf: Energy spectra of forward neutral particles

ZDC (ATLAS Zero Degree Calorimeter): Detection of forward neutrons and photons

AFP(ATLAS Forward Proton Detector): Detection of forward protons

Single Diffractive Processes

Common acceptance for LHCf and AFP

- First time such set of detectors were to be used together
- Common acceptance between LHCf and AFP detectors
 Expected event rate = 66.2 Hz
 - ✤ Total number of exp. events (for 2 days) = ~12 million
- Study generated enough incentive to convince all sides
- ✤ Joint run successfully performed in September, 2022
 - Single run lasted for 2 days 12 hours
 - ✤ Longest LHC run so far
 - Biggest forward data set taken at once
 - More than 300 millions events are recorded (total)

Proton-oxygen run in 2024

- There is a planned proton-oxygen run in 2024
- Promises a better approximation for the EAS
- Model prediction distributions have dicrepancy in the very forward region
 - ✤ Up to 50%
 - Generator tuning is required
- Common acceptance study for LHCf, ZDC and AFP is still continuing

Conclusion

- Cosmic ray models strongly depend on good understanding of soft-QCD interactions
- ✤ Accelerator experiments such as LHC provides useful information for such interactions
- Forward region detectors are the key to understanding of such events
- A successful collaboration between ATLAS, AFP and LHCf has been achieved for the proton-proton run
 Single diffraction analysis of the collected data is currently undergoing
- Next is the proton-oxygen run in 2024
 - The study for the common acceptance is continuing

Thank you for your attention!