KRANOS: K40 Radiations for Advanced Neuroimaging of Stroke

Sana Tabbassum, Priscilla Pani, Caludia Seitz, Laura Franconi 12th June 2023

DESY Zeuthen Particle Physics Mini-Retreat

- A neurological disorder , sudden loss of brain function
- Permanent brain tissue damage
- 12.2 million strokes per year (one every 3 seconds)
- Leading cause of death and disability
- Estimated global burden 451 billion \$.

- A neurological disorder , sudden loss of brain function
- Permanent brain tissue damage
- 12.2 million strokes per year (one every 3 seconds)
- Leading cause of death and disability
- Estimated global burden 451 billion \$.

Ischemic stroke: Blockage of blood flow to the brain due to a clot.

Hemorrhagic stroke: Bleeding in or around the brain from a ruptured blood vessel.

- A neurological disorder , sudden loss of brain function
- Permanent brain tissue damage
- 12.2 million strokes per year (one every 3 seconds)
- Leading cause of death and disability
- Estimated global burden 451 billion \$.

Types of Stroke

Ischemic stroke: Blockage of blood flow to the brain due to a clot.

Hemorrhagic stroke: Bleeding in or around the brain from a ruptured blood vessel.

Often starts after stroke symptoms appear

Often starts after stroke symptoms appear

Neurological Exam Physician

True positive 82%, True negative 83% Standard method Often starts after stroke symptoms appear

Often starts after stroke symptoms appear

Neurological Exam Physician Computed Tomography (CT)

True positive 82%, True negative 83% Standard method Often starts after stroke symptoms appear

True positive 58%, True negative 85% Radiation Dose Sees tissues not elements High Cost (~0.5 M) Not Portable (typical) Trained professionals

(2)

Often starts after stroke symptoms appear

Neurological Exam Physician

True positive 82%, True negative 83% Standard method Often starts after stroke symptoms appear True positive 58%, True negative 85% Radiation Dose Sees tissues not elements High Cost (~0.5 M) Not Portable (typical) Trained professionals

Computed Tomography

(CT)

Magnetic Resonance Image (MRI)

True positive 80-90%, True negative 97% Long acquisition time High Cost (>1M Euro) Not Portable, heavy Specialized professionals

[1] Proc. Intl. Soc. Mag. Reson. Med. 20 (2012)

[1] Proc. Intl. Soc. Mag. Reson. Med. 20 (2012)

[1] Proc. Intl. Soc. Mag. Reson. Med. 20 (2012)

MRI Rat brain study showed that potassium distribution in the brain can be used as a biomarker for strokes

[1] Proc. Intl. Soc. Mag. Reson. Med. 20 (2012)

MRI Rat brain study showed that potassium distribution in the brain can be used as a **biomarker** for strokes

9.4T MRI system (BioSpec, Bruker Biospin GmbH, Germany)

radioactive K40 1.46MeV photons

D

natura

solutior

1.Advantages

- ✓ Quick diagnostic within window of recovery
- ✓ **Inexpensive** (Low income Countries)
- ✓ Portable
- ✓ Radiation free
- ✓ Future population at risk
 Screeing
 personalised medicine

1.Advantages

- ✓ Quick diagnostic within window of recovery
- ✓ Inexpensive (Low income Countries)
- ✓ Portable
- ✓ Radiation free
- Future population at risk
 Screeing
 personalised medicine

2. Objectives

Timely intervention during asphyxia to

minimize the loss of brain cells

- High detection efficiency (= speed)
- Portability (= compact dimensions)
- Background rejection

3.Challenges

- K40 potassium in the human body is very low.
- $\,\circ\,$ Factors impacting counts
 - High sensitivity & Efficiency
 - Interaction probablity
 - $\,\circ\,$ Background radiation
 - Speed?
- Price?

3.Challenges

- K40 potassium in the human body is very low.
- $\,\circ\,$ Factors impacting counts
 - High sensitivity & Efficiency
 - \circ Interaction probablity
 - Background radiation
 - Speed?

• Price?

4. Tech Choices

 Scintillation Crystal: Chosen as primary detection material
 Idea ?? Maybe Compton Camera Technology in Later Stages

Technology Selection: Navigating the Choices

Considered Factors

• Sensitivity

- Background radiations
- Acquision time
- Price

Design Parameters

- Material composition
- Material Form
- System's Total structure

Detectors	Readout	Material Form		
Scintillator	SiPM	1. 2. 3.	Monolithic Microcolumnar array (CsI) Pixeleted (Array)	

#	Detectors	# PE events	Energy Resolution (E=1.46MeV)	(PE events) *(Light Yield) (photons / MeV)	Price	
1	Nal	12	7-8%	456,000	low	
2	BGO	87	8.5%	783,000	high	
3	LYSO	56	8.2%	1,848,000	high	
4	GYGAG	18	3-5%	828,000	high	
5	CeBr3	14	3.0%	840,000	Very high	
Competitive Semiconductors						
6	CdZnTe	16	1.5%			
7	CdTe	19	5.5%			

PE = Photoelectric events

GATE Simulations and Validation Studies

Validating gamma source

Inverse Square Law - Total counts (vacuum vs. Water)

- Increased the distance of the point source from the detector
- Variation in observed counts fall as Inverse square of the distance

GATE Simulations and Validation Studies

Point Source

Inverse Square Law - Total counts (vacuum vs. Water)

Validating gamma source

- Increased the distance of the point source from the detector
- Variation in observed counts fall as Inverse square of the distance

Scintillation Crystal Geometry

Conclusions:

Optimal thickness of detector was found to be 2.5cm with >95% absorptions of gamma 8

KRANOS Pathways

KRANOS Pathways

Development of background management algorithms

Proof of Principles (Lab Setup)

Secured funding:

 Desy Generator Program (1 postdoc)
 GoBio Initial (100K) Close collaboration with Technology Transfer group to secure further fundings

Pending Applications:					
- Tschira Boost Fund (80K - lab setup)					
- Add-On Hertz Fellowship (12K – interdiscip-					
training)					
- ILB Brandenburg Funding (50K - lab					
infrastructure)					

Support Needed for Lab Establishment and Validation

Support Needed for Lab Establishment and Validation

- Additional funding required for lab setup and system validation
- To conduct tests and to validate the functionality and performance of the imaging system
- Potential impact of our research in advancing brain imaging technology

move up/down (z-direction)
 move towards/away from the phantom
 tilt towards/away from the phantom

Thank You

Backup

Potassium is the most abundant intracellular ion and essential mineral in the human body

FUNCTIONS OF POTASSIUM IN THE HUMAN BODY

FLUID BALANCE

HEART HEALTH BLOOD PRESSURE REGULATION

Vital element physiological functions : ➤ Fluid balance ➤ Muscle contraction ➤ Heart function ➤ Regulation of blood pressure ➤ nerve function

- Potassium homeostasis is crucial , excessive and insufficient levels
- **KRANOS**: Non invasive imaging of Potassium in the brain

- Stroke is a neurological disorder
- Sudden loss of brain function and permanent brain tissue damage
- 12.2 million strokes per year (one every 3 second)
- Leading cause of death and disability
- Estimated global burden 451 billion \$.

Types of Stroke

Ischemic stroke: Blockage of blood flow to the brain due to a clot.

Hemorrhagic stroke:

Bleeding in or around the brain from a ruptured blood vessel.

Potassium decay scheme

Fig.1.1 ⁴⁰K decay scheme

Impaired Energy Metabolism

- Impaired energy metabolism is a key pathological hallmark of ischemic stroke.
- A reduction in glucose and oxygen supply results in severe loss of ATP production in an ischemic brain.
- Cerebral ischemia disrupts mitochondrial oxidative metabolism and enhances mitochondria-mediated oxidative stress.

