The influence of gauge field smearing on discretisation effects

Andreas Risch¹ andreas.risch@desy.de

In collaboration with: Stefan Schaefer¹, Rainer Sommer^{1,2}

¹John von Neumann-Institut f
ür Computing NIC Deutsches Elektronen-Synchrotron DESY Platanenallee 6, 15738 Zeuthen, Germany

²Institut für Physik Humboldt-Universität zu Berlin Newtonstr. 15, 12489 Berlin, Germany

Monday 12th June, 2023

Motivation: The muon anomalous magnetic moment a_{μ}

• Magnetic moment of the muon \vec{M} :

$$\vec{M} = g_{\mu} \frac{e}{2m_{\mu}} \vec{S},$$

 g_{μ} gyromagnetic ratio

- ▶ Relativistic QM (Dirac equation): $g_{\mu} = 2$
- ► Anomalous magnetic moment (QFT effects): $a_{\mu} = \frac{g_{\mu}-2}{2}$
- Experimental value: BNL + FNAL 2021¹ (0.35 ppm)
 vs. Standard Model prediction: Muon g-2 Theory Initiative 2020²

$$a_{\mu}^{\text{Exp}} = 116592061(41) \cdot 10^{-11}$$
$$a_{\mu}^{\text{SM}} = 116591810(43) \cdot 10^{-11}$$

Precision observable \Rightarrow indirect searches for new physics

- \blacktriangleright Decomposition into $a_{\mu}^{\rm SM} = a_{\mu}^{\rm QED} + a_{\mu}^{\rm QCD} + a_{\mu}^{\rm EW}$
- ▶ Error of LO-HVP contribution $a_{\mu}^{\text{HVP}} \subset a_{\mu}^{\text{QCD}}$ is dominant

¹Abi et al. 2021.

²Aoyama et al. 2020.

Motivation: LO-HVP contribution to a_{μ}

LO-HVP contribution a_{μ}^{HVP} :

▶ From dispersion relation³:

$$a_{\mu}^{\text{HVP}} = \frac{\alpha^2}{3\pi^2} \int_{4m_{\pi}^2}^{\infty} \mathrm{d}s \frac{K(s, m_{\mu})}{s} R(s)$$
$$R(s) = \frac{\sigma(e^+e^- \to \text{hadrons}(+\gamma))(s)}{(4\pi\alpha^2)/(3s)}$$

Experimental input:

Energy dependent cross section $\sigma(s)$

▶ From Lattice QCD in TMR ab-initio (time-momentum representation)⁴:

$$a_{\mu}^{\text{HVP}} = \left(\frac{\alpha}{\pi}\right)^2 \int_0^\infty \mathrm{d}t \, \widetilde{K}(t, m_{\mu}) \, C(t)$$
$$C(t) \, \delta^{kl} = -\int \mathrm{d}x^3 \left\langle \mathcal{V}_{\gamma}^k(\vec{x}, t) \, \mathcal{V}_{\gamma}^l(\vec{0}, 0) \right\rangle$$

Experimental input: E.g. hadron masses, m_{π} , m_K , m_D , m_{Ω}

LO-HVP

³Aoyama et al. 2020.

⁴Bernecker and Meyer 2011; Francis et al. 2013; Della Morte et al. 2017.

⁵Colangelo 2022.

Motivation: Window contributions to a_{μ}^{HVP}

TMR allows to define window contributions $(a_{\mu}^{\text{HVP}})^{i}$ with $i \in \{\text{SD}, \text{ID}, \text{LD}\}^{6}$: $(a_{\mu}^{\text{HVP}})^{i} = \left(\frac{\alpha}{\pi}\right)^{2} \int_{0}^{\infty} dt \, \omega^{i}(t) \, \widetilde{K}(t, m_{\mu}) \, C(t)$

Smoothed window functions $\omega^i(t)$

TMR integrand for the isovector contribution to $a_{\mu}^{\rm HVP}$ together with the short (SD), intermediate (ID) and long-distance (LD) contributions⁷

- $(a_{\mu}^{\text{HVP}})^{\text{SD}}$: Sizable discretisation effects (UV cutoff)
- $(a_{\mu}^{\text{HVP}})^{\text{LD}}$: Sizable finite volume effects (IR cutoff) and noise problem

⁶Blum et al. 2018.

⁷Cè et al. 2023.

Motivation: Continuum extrapolations of $(a_{\mu}^{\rm HVP,I1})^{\rm SD}$ and $(a_{\mu}^{\rm HVP,I1})^{\rm ID}$

Continuum extrapolations of $(a_{\mu}^{\text{HVP},\text{II}})^{\text{SD}}$ and $(a_{\mu}^{\text{HVP},\text{II}})^{\text{ID}}$ at the SU(3)-symmetric point normalised to the finest ensemble.⁸

- ▶ Extrapolation of $(a_{\mu}^{\text{HVP},\text{I1}})^{\text{SD}}$ highly problematic: Non-monotonous, strong curvature, uncontrolled higher order contributions in a
- ▶ For reliable continuum extrapolations of short distance observables discretisation effects have to be reduced!

⁸Image provided by Simon Kuberski

Reduction of discretisation effects

Add gauge ensembles at finer lattice spacings:

- Obtain data points closer to continuum value
- ► Caveat: Critical slowing down of MC algorithms towards continuum limit⁹
 ⇒ Simulations at finer lattice spacings become disproportionally expensive:

 $costs \propto a^{-p}$ at fixed L where p > 6

(naive volume scaling: p = 4)

Modify lattice discretisation to obtain a flatter continuum extrapolation:

- ▶ Evaluation of action becomes more expensive (by constant factor)
- Current CLS (Coordinated Lattice Simulations) action has not been modified for the last 20 years
- Caveat: Establishing a new action requires generation of a large set of new gauge ensembles

 \Rightarrow Huge computational effort (several 100 MC oreH) and human effort (several man-years)

⁹Schaefer et al. 2011.

Discretisation effects in lattice QCD with Wilson fermions

Two strategies to modify current CLS action (O(a)-improved Wilson fermions):

Further **improvement** of action: W2/D234 fermion action¹⁰ (tree-level $O(a^2)$ -improved) adding irrelevant dim-6 operator¹¹

$$\delta \mathscr{L} = -\frac{a^2}{6} \sum_{\mu} \overline{\Psi} \gamma_{\mu} \nabla_{\mu} \Delta_{\mu} \Psi$$

Smearing of gauge fields U in Dirac operator (**UV filtering**): D[S[U]] \Rightarrow Reduces likelihood of finding small eigenvalues (related to explicit χ SB breaking) and amount of renormalization¹²

Caveat: Too much smearing destroys UV structure of lattice theory and makes continuum extrapolation unreliable

What smearing strengths allow for a controlled continuum extrapolation?

▶ First focus on observable smearing $\langle O[S[U]] \rangle$ in SU(3) Yang-Mills theory

¹⁰Alford et al. 1997.

¹¹Sheikholeslami and Wohlert 1985.

¹²Hasenfratz et al. 2007.

Gradient flow smearing

Gradient flow formalism¹³:

▶ In free theory: Define smeared gauge field $B_{\mu}(x, t_{\rm fl})$ with $t_{\rm fl} \ge 0$ using heat kernel $K(z, t_{\rm fl})$ as:

$$B_{\mu}(x, t_{\rm fl}) = \int d^4 y \, K(x - y, t_{\rm fl}) \, A_{\mu}(y)$$
$$K(z, t_{\rm fl}) = \int \frac{dp^4}{(2\pi)^4} \, e^{ipz} \, e^{-t_{\rm fl}p^2} = \frac{e^{-\frac{z^2}{4t_{\rm fl}}}}{(4\pi t_{\rm fl})^2}$$

- \Rightarrow High momentum modes are damped
- $\Rightarrow B_{\mu}(x,t_{\rm fl})$ is spherically smoothed with a mean-square radius $r_{\rm sm}=\sqrt{8t_{\rm fl}}$

Non-perturbative gauge-covariant formulation:

$$\frac{\partial}{\partial t_{\rm fl}} B_{\mu}(x, t_{\rm fl}) = -\frac{\delta S_{\rm YM}[B]}{\delta B_{\mu}(x, t_{\rm fl})} = D_{\nu} G_{\nu\mu}(x, t_{\rm fl}) \qquad B_{\mu}(x, 0) = A_{\mu}(x)$$
$$G_{\mu\nu} = \partial_{\mu} B_{\nu} - \partial_{\nu} B_{\mu} + [B_{\mu}, B_{\nu}] \qquad D_{\mu} = \partial_{\mu} + [B_{\mu}, \cdot]$$

 \Rightarrow Integration of flow equation required

▶ Preserve continuum physics $\Rightarrow r_{\rm sm} \to 0$ for $a \to 0$

$$r_{\rm sm} \propto a \quad \Leftrightarrow \quad \frac{r_{\rm sm}^2}{a^2} = \frac{8t_{\rm fl}}{a^2} = \text{const}$$

¹³Lüscher 2010; Lüscher and Weisz 2011.

Creutz ratios

Creutz ratios in the continuum:

Planar rectangular Wilson loop of size $r \times t$:

$$W(r,t) = \left\langle \operatorname{tr} \left(P \exp \left(i \oint_{\gamma(r,t)} dx_{\mu} A_{\mu}(x) \right) \right) \right\rangle$$

Creutz ratios:

$$\chi(r,t) = -\frac{\partial}{\partial t} \frac{\partial}{\partial r} \ln \left(W(r,t) \right)$$

- ► Determine force between two static quarks: $\chi(r,t) \to F_{\overline{qq}}(r)$ for $t \to \infty$
- Creutz ratios probe physics at different distances
 Allows to study influence of smearing at different physical distances
- Focus on diagonal Creutz ratios $\chi(r) := \chi(r, r)$ with r = t

Creutz ratios $\hat{\chi} \equiv \chi \cdot t_0$ as functions of the distance $\hat{r} \equiv \frac{r}{\sqrt{8t_0}}$ on different ensembles

Continuum extrapolations of Creutz ratios

Continuum extrapolations of Creutz ratio $\hat{\chi} \equiv \chi \cdot t_0$ at a distance $\hat{r} \equiv \frac{r}{\sqrt{8t_0}}$ $(r = 0.14 \,\text{fm})$ as a function of the lattice spacing $\hat{a}^2 \equiv \frac{a^2}{8t_0}$

- Continuum limit independent of $\frac{8t_{\rm fl}}{a^2}$ by construction
- ▶ For larger $\frac{8t_{\rm fl}}{a^2}$ smearing extrapolations show non-monotonic behaviour
- ▶ Loose criterion for a controlled continuum extrapolation: Monotony ⇒ Track position of maximum as a function of $\frac{8t_{f1}}{a^2}$

Monotony criterion for a controlled continuum extrapolation

\hat{r}	$r[{\rm fm}]$
0.3	0.14
0.4	0.18
0.5	0.23
0.6	0.28

Location of the maximum of $\hat{\chi}(\hat{a})$ as a function of the smearing strength $\frac{8t_{\rm fl}}{a^2}$ for several distances $\hat{r} \equiv \frac{r}{\sqrt{8t_0}}$

- ▶ Monotonic extrapolation at distance \hat{r} when point $\left(\frac{8t_{\text{fl}}}{a^2}, \hat{a}^2\right)$ below corresponding curve
- Larger distances \hat{r} allow for more smearing $\frac{8t_{\rm fl}}{a^2}$
- ▶ Considering lattice spacings $a \le 0.06$ fm: For correct physics above e.g. r = 0.14 fm choose $\frac{8t_{fl}}{a^2} \le 1$

Conclusions and Outlook

- ▶ Short distance observables may suffer from sizeable discretisation effects
- ▶ Large discretisation effects impede controlled continuum extrapolations
- Smearing may reduce discretisation effects, but too much smearing alters short distance behaviour significantly
- ▶ We have performed the first systematic study of the influence of smearing on the continuum extrapolation
- For $r \ge 0.14$ fm $\frac{8t_{fl}}{a^2} \le 1$ seems acceptable
- ▶ We will corroborate this considering various observables with fermions and fixing the smearing to the found range
- ▶ Bigger smearing radii have been used in the past, e.g. BMW g-2 computation¹⁴ $\frac{8t_{\rm fl}}{a^2} = 4$

Appendix

SU(3) gauge ensembles

SU(3) Yang-Mills theory gauge ensembles:

- ▶ Wilson plaquette action
- ▶ Open temporal boundary conditions¹⁵ (alleviate topology freezing)
- Scale setting via reference flow time t_0^{16}
- ▶ Lattice spacings between 0.08 and 0.02 fm

ensemble	β	T/a	L/a	$a[{ m fm}]$	$L[{\rm fm}]$
sft1	6.0662	80	24	0.0834(4)	2.00(1)
sft2	6.2556	96	32	0.0624(4)	2.00(1)
sft3	6.5619	96	48	0.0411(2)	1.97(1)
sft4	6.7859	192	64	0.0312(2)	2.00(1)
sft5	7.1146	320	96	0.0206(2)	1.98(2)

• Constant spatial extent $L = 2 \,\mathrm{fm}$

SU(3) gauge ensembles¹⁷

¹⁵Lüscher and Schaefer 2011.

¹⁶Lüscher 2010.

 $^{^{17}\}mathrm{Husung}$ et al. 2018.

Creutz ratios and gradient flow smearing

Influence of gradient flow smearing $\frac{8t_{\rm fl}}{a^2} = \text{const}$:

Reduces statistical error

Alters path to continuum and hence discretisation effects

Focus on region $0.3 \leq \frac{r}{\sqrt{8t_0}} \leq 0.6 \Leftrightarrow 0.14 \,\mathrm{fm} \leq r \leq 0.24 \,\mathrm{fm}$, where discretisation effects are not uncontrollably large and the statistical error is sufficiently small

Combined continuum extrapolation and small flow time expansion

Continuum extrapolation of $\hat{\chi}(\hat{r})$ with $\hat{\chi} \equiv \chi \cdot t_0$ at fixed distance $\hat{r} \equiv \frac{r}{\sqrt{8t_0}}$

▶ Double expansion in lattice spacing $\hat{a} \equiv \frac{a}{\sqrt{8t_0}}$ (Symanzic effective theory) and in flow time parameter $\varepsilon \equiv \frac{t_{fl}}{t_0}$ (small flow time expansion):

$$\hat{\chi} = \sum_{i=0}^{n} c_i \hat{a}^i + O(\hat{a}^{n+1}) \qquad c_i = \sum_{i=0}^{m} c_{ij} \varepsilon^j + O(\varepsilon^{m+1})$$

Truncated fit ansatz:

$$\hat{\chi}_{\rm tr}(\hat{a},\varepsilon) = c_{00} + c_{20}\hat{a}^2 + c_{40}\hat{a}^4 + c_{01}\varepsilon + c_{21}\hat{a}^2\varepsilon + c_{02}\varepsilon^2$$

Physical gradient flow $\varepsilon > 0$ alters continuum limit:

$$\hat{\chi}_{\rm tr}(\hat{a}=0,\varepsilon) = c_{00} + c_{01}\varepsilon + c_{02}\varepsilon^2$$

Rearrange terms to obtain smearing expansion with $\frac{\varepsilon}{\hat{a}^2} = \frac{8t_{\text{fl}}}{a^2} = \text{const}$:

$$\hat{\chi}_{tr}\left(\hat{a}, \frac{8t_{fl}}{a^2}\right) = d_0 + d_2\hat{a}^2 + d_4\hat{a}^4$$

Coefficients d_i depend on smearing strength $\frac{8t_{\rm fl}}{a^2}$:

$$d_0 = c_{00} \quad d_2 = c_{20} \left(1 + \frac{c_{01}}{c_{20}} \frac{8t_{\text{fl}}}{a^2} \right) \quad d_4 = c_{40} \left(1 + \frac{c_{21}}{c_{40}} \frac{8t_{\text{fl}}}{a^2} + \frac{c_{02}}{c_{40}} \frac{64t_{\text{fl}}^2}{a^4} \right)$$

Gradient flow smearing $\frac{8t_{\rm fl}}{a^2} > 0$ does not alter continuum limit:

$$\hat{\chi}_{\rm tr} \left(\hat{a} = 0, \frac{8t_{\rm fl}}{a^2} \right) = d_0 = c_{00}$$

4/7

References I

- B. Abi, T. Albahri, S. Al-Kilani, et al. "Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm". In: *Phys. Rev. Lett.* 126.14 (2021), p. 141801. DOI: 10.1103/PhysRevLett.126.141801. arXiv: 2104.03281 [hep-ex].
- Mark G. Alford, T. R. Klassen, and G. P. Lepage. "Improving lattice quark actions". In: Nucl. Phys. B 496 (1997), pp. 377-407. DOI: 10.1016/S0550-3213(97)00249-6. arXiv: hep-lat/9611010.
 - T. Aoyama, N. Asmussen, M. Benayoun, et al. "The anomalous magnetic moment of the muon in the Standard Model". In: *Phys. Rept.* 887 (2020), pp. 1–166. DOI: 10.1016/j.physrep.2020.07.006. arXiv: 2006.04822 [hep-ph].

David Bernecker and Harvey B. Meyer. "Vector Correlators in Lattice QCD: Methods and applications". In: *Eur. Phys. J. A* 47 (2011), p. 148. DOI: 10.1140/epja/i2011-11148-6. arXiv: 1107.4388 [hep-lat].

T. Blum et al. "Calculation of the hadronic vacuum polarization contribution to the muon anomalous magnetic moment". In: *Phys. Rev. Lett.* 121.2 (2018), p. 022003. DOI: 10.1103/PhysRevLett.121.022003. arXiv: 1801.07224 [hep-lat].

Sz. Borsanyi et al. "Leading hadronic contribution to the muon magnetic moment from lattice QCD". In: *Nature* 593.7857 (2021), pp. 51–55. DOI: 10.1038/s41586-021-03418-1. arXiv: 2002.12347 [hep-lat].

References II

G. Colangelo et al. "Prospects for precise predictions of a_{μ} in the Standard Model". In: (Mar. 2022). arXiv: 2203.15810 [hep-ph].

Marco Cè et al. "Intermediate window observable for the hadronic vacuum polarization contribution to the muon g - 2 from O(a) improved Wilson quarks". In: *PoS* LATTICE2022 (2023), p. 321. DOI: 10.22323/1.430.0321. arXiv: 2211.17083 [hep-lat].

M. Della Morte et al. "The hadronic vacuum polarization contribution to the muon g-2 from lattice QCD". In: *JHEP* 10 (2017), p. 020. DOI: 10.1007/JHEP10(2017)020. arXiv: 1705.01775 [hep-lat].

Anthony Francis et al. "A new representation of the Adler function for lattice QCD". In: *Phys. Rev. D* 88 (2013), p. 054502. DOI: 10.1103/PhysRevD.88.054502. arXiv: 1306.2532 [hep-lat].

Anna Hasenfratz, Roland Hoffmann, and Stefan Schaefer. "Hypercubic smeared links for dynamical fermions". In: *JHEP* 05 (2007), p. 029. DOI: 10.1088/1126-6708/2007/05/029. arXiv: hep-lat/0702028.

Nikolai Husung et al. "SU(3) Yang Mills theory at small distances and fine lattices". In: *EPJ Web Conf.* 175 (2018). Ed. by M. Della Morte et al., p. 14024. DOI: 10.1051/epjconf/201817514024. arXiv: 1711.01860 [hep-lat].

References III

- Martin Lüscher. "Properties and uses of the Wilson flow in lattice QCD". In: *JHEP* 08 (2010). [Erratum: JHEP 03, 092 (2014)], p. 071. DOI: 10.1007/JHEP08(2010)071. arXiv: 1006.4518 [hep-lat].
- Martin Lüscher and Stefan Schaefer. "Lattice QCD without topology barriers". In: *JHEP* 07 (2011), p. 036. DOI: 10.1007/JHEP07(2011)036. arXiv: 1105.4749 [hep-lat].
- - Martin Lüscher and Peter Weisz. "Perturbative analysis of the gradient flow in non-abelian gauge theories". In: *JHEP* 02 (2011), p. 051. DOI: 10.1007/JHEP02(2011)051. arXiv: 1101.0963 [hep-th].

Stefan Schaefer, Rainer Sommer, and Francesco Virotta. "Critical slowing down and error analysis in lattice QCD simulations". In: *Nucl. Phys. B* 845 (2011), pp. 93–119. DOI: 10.1016/j.nuclphysb.2010.11.020. arXiv: 1009.5228 [hep-lat].

B. Sheikholeslami and R. Wohlert. "Improved Continuum Limit Lattice Action for QCD with Wilson Fermions". In: Nucl. Phys. B 259 (1985), p. 572. DOI: 10.1016/0550-3213(85)90002-1.