Elimination of Negative Weights in Monte Carlo Event Samples

Andreas Maier

12 June 2023

J. R. Andersen, A. Maier Eur. Phys. J. C 82 (2022) 5, 433
J. R. Andersen, A. Maier, D. Maître arXiv:2303.15246

What are event weights?

Leading-order cross sections

Example: prediction for dijet production cross section

1 Relate to partonic cross section

$$\sigma_2$$
 jets $\stackrel{\mathsf{LO}}{=} \sigma_2$ partons

- 2 Simulate partonic scattering events with weights w_i
 - Computed from scattering matrix elements + PDF + phase space factor
 - Weights proportional to probability: $w_i > 0$
 - Sum of weights gives the cross section:

$$\sigma_{2 \text{ partons}} = \sum_{i} w_{i}$$

What are negative event weights?

Next-to-leading-order cross sections

Example: prediction for dijet production cross section

Relate to partonic cross section

$$\sigma_{2 \text{ jets}} \stackrel{\mathsf{NLO}}{=} \sigma_{2 \text{ partons}} + \sigma_{3 \text{ partons}}$$

2 Simulate partonic scattering events

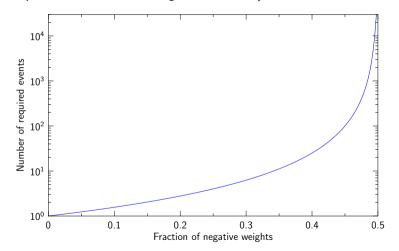
$$\sigma_{2 \text{ partons}} = \sum_{i} w_{i}$$
 $\sigma_{3 \text{ partons}} = \sum_{j} w_{j}$

 $\sigma_{2 \text{ partons}}$, $\sigma_{3 \text{ partons}}$ not separately observable:

Events weights can be both positive and negative

Why are negative event weights a problem?

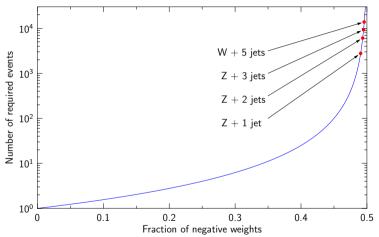
Number of required events to reach given accuracy:



Large number of events ⇒ expensive detector simulation

Why are negative event weights a problem?

Number of required events to reach given accuracy:

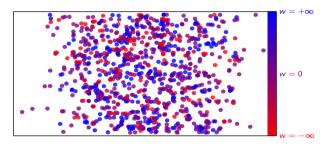


[BLACKHAT 2013 + 2017]

Further increases with higher orders & parton shower matching/merging

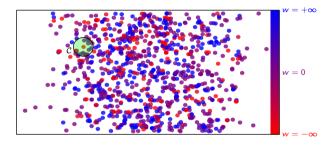
The idea

Events in 2D projection of phase space:



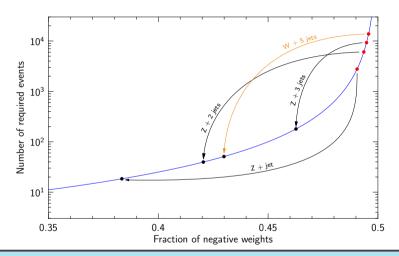
The idea

Events in 2D projection of phase space:



- 1 Choose negative-weight event as seed
- 2 Redistribute weights in small hypersphere $\mathcal C$ around seed
- 3 Repeat

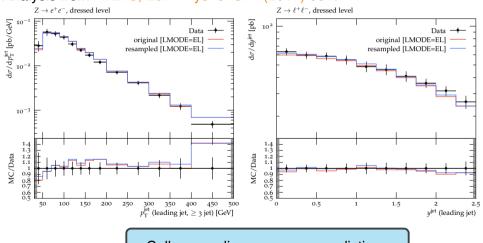
Results



Cell resampling drastically reduces the number of required events

Results

Analysis from ATLAS, Eur. Phys. J. C77 (2017) 361:



Cell resampling preserves predictions

Summary

- Negative event weights lead to slow statistical convergence
- Idea: remove negative weights by smearing over small phase space regions
 - Potential to reduce the number of required events by orders of magnitude
 - Preserves predictions of observables
 - Agnostic with respect to process and observables
 - Automatic improvement with increasing statistics
 - ► Computationally efficient: ~ 55 CPU hours for one billion events (W + 5 jets)

Summary

- Negative event weights lead to slow statistical convergence
- Idea: remove negative weights by smearing over small phase space regions
 - Potential to reduce the number of required events by orders of magnitude
 - Preserves predictions of observables
 - Agnostic with respect to process and observables
 - Automatic improvement with increasing statistics
 - ► Computationally efficient: ~ 55 CPU hours for a billion events (W + 5 jets)

Make event generation more sustainable

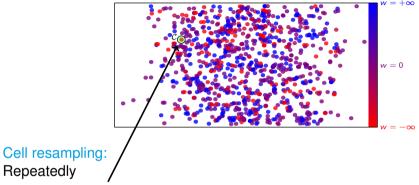
Summary

- Negative event weights lead to slow statistical convergence
- Idea: remove negative weights by smearing over small phase space regions
 - Potential to reduce the number of required events by orders of magnitude
 - Preserves predictions of observables
 - Agnostic with respect to process and observables
 - Automatic improvement with increasing statistics
 - $lue{}$ Computationally efficient: \sim 55 CPU hours for one billion events (W + 5 jets)

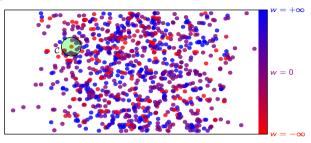
Future directions:

- Application to parton showered samples
- Systematic estimate of uncertainties
- Integrate into existing workflows
- Guide Monte Carlo event generation?

Backup



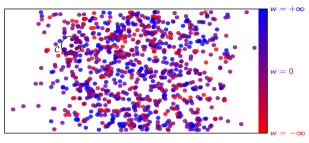
1 Choose seed event with w < 0 for cell C



Cell resampling:

Repeatedly

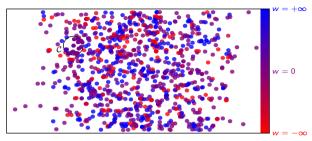
- **1** Choose seed event with w < 0 for cell C
- 2 Iteratively add nearest event to cell until $\sum_{i \in \mathcal{C}} w_i \geq 0$



Cell resampling:

Repeatedly

- **1** Choose seed event with w < 0 for cell C
- 2 Iteratively add nearest event to cell until $\sum_{i \in \mathcal{C}} w_i \geq 0$
- 3 Reweight: $w_i o w_i' = \frac{\sum_{j \in \mathcal{C}} w_j}{\sum_{j \in \mathcal{C}} |w_j|} |w_i| \ge 0$



Cell resampling:

Repeatedly

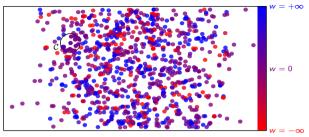
1 Choose seed event with w < 0 for cell C

2 Iteratively add nearest event to cell until $\sum_{i \in \mathcal{C}} w_i \geq 0$

3 Reweight: $w_i o w_i' = \frac{\sum_{j \in \mathcal{C}} w_j}{\sum_{j \in \mathcal{C}} |w_j|} |w_i| \ge 0$

Sufficient statistics: cell size < experimental resolution

Otherwise: limit cell size, accept $w_i' < 0$



Cell resampling:

Repeatedly

- **1** Choose seed event with w < 0 for cell C
- 2 Iteratively add nearest event to cell until $\sum_{i \in C} w_i \ge 0$ What does "nearest" mean?
- 3 Reweight: $w_i \rightarrow w_i' = \frac{\sum_{j \in \mathcal{C}} w_j}{\sum_{j \in \mathcal{C}} |w_j|} |w_i| \ge 0$

Sufficient statistics: cell size < experimental resolution

Otherwise: limit cell size, accept $w_i' < 0$

Need distance function d(e, e') between events e, e'

- Essential: d(e, e') small $\Rightarrow e, e'$ look similar in detector or differ only in properties the event generator can't predict
- Desirable: d(e, e') large $\Rightarrow e, e'$ look different in detector

Need distance function d(e, e') between events e, e'

- Essential: d(e, e') small $\Rightarrow e, e'$ look similar in detector or differ only in properties the event generator can't predict
- Desirable: d(e, e') large $\Rightarrow e, e'$ look different in detector

Example: infrared safety

- d(e,e') unaffected by collinear splittings with $\Theta \to 0$
- d(e,e') unaffected by soft particles with $p \to 0$
- ⇒ define distance in terms of infrared-safe physics objects, e.g. jets

Here: Example for fixed-order (QCD) event generator

Concrete implementation

jets electrons

$$\textbf{①} \ \, \text{Collect all "particles" in event e into sets $\{\ s_1\ ,\ s_2\ ,\dots,s_T\}$ }$$

$$d(e,e') = \sum_{t=1}^T d(s_t,s_t')$$

Concrete implementation

1 Collect all "particles" in event e into sets $\{s_1, s_2, \ldots, s_T\}$

$$d(e,e') = \sum_{t=1}^T d(s_t,s_t')$$

electrons

2 Particles in s_t have four-momenta (p_1, \dots, p_P)

Particles in s_t' have four-momenta (q_1 , . . . , q_Q , 0, . . . , 0)

$$d(s_t, s_t') = \min_{\sigma \in S_P} \sum_{i=1}^P d_t(p_i, q_{\sigma(i)})$$

Concrete implementation

iets electrons

Collect all "particles" in event e into sets $\{s_1, s_2, \ldots, s_T\}$

$$d(e,e') = \sum_{t=1}^T d(s_t,s_t')$$

2 Particles in s_t have four-momenta (p_1, \ldots, p_P)

Particles in s'_t have four-momenta (q_1' , ...

$$d(s_t, s_t') = \min_{\sigma \in S_P} \sum_{i=1}^P d_t(p_i, q_{\sigma(i)})$$

Concrete implementation

1 Collect all "particles" in event e into sets $\{s_1, s_2, \ldots, s_T\}$

$$d(e,e') = \sum_{t=1}^T d(s_t,s_t')$$

electrons

2 Particles in s_t have four-momenta (p_1, \ldots, p_P)

Particles in s'_t have four-momenta $(q_1, \ldots, q_Q, 0, \ldots, 0)$

$$d(s_t, s_t') = \min_{\sigma \in S_P} \sum_{i=1}^P d_t(p_i, q_{\sigma(i)})$$

Concrete implementation

① Collect all "particles" in event e into sets $\{s_1, s_2, \ldots, s_T\}$

$$d(e,e') = \sum_{t=1}^{T} d(s_t,s_t')$$

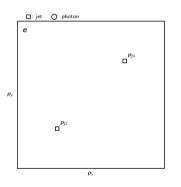
jets electrons

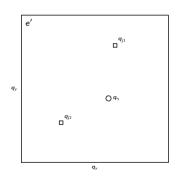
Particles in s_t have four-momenta (p_1, \ldots, p_P) Particles in s'_{+} have four-momenta $(q_1, \ldots, q_Q, 0, \ldots, 0)$

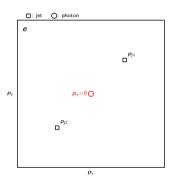
$$d(s_t, s_t') = \min_{\sigma \in S_P} \sum_{i=1}^P d_t(p_i, q_{\sigma(i)})$$

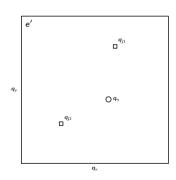
Choose distance function between particle momenta Here: independent of particle type t, do not consider internal structure

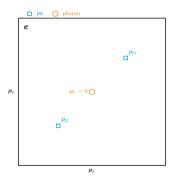
$$d_t(p,q) = \sqrt{\sum_{i=1}^3 (p_i-q_i)^2 + au^2 (p_\perp-q_\perp)^2}$$
 au : tunable parameter

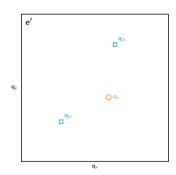




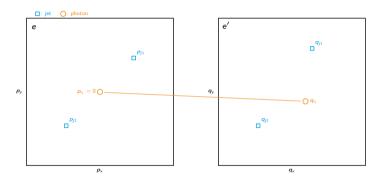






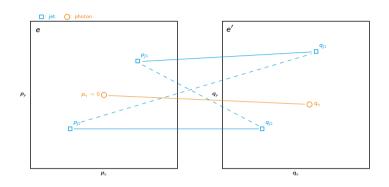


$$d(e, e') = d(s_j, s'_j) + d(s_{\gamma}, s'_{\gamma})$$



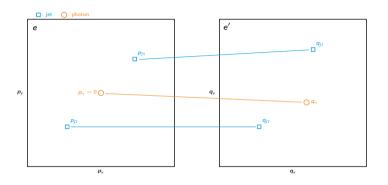
$$d(e, e') = d(s_j, s'_j) + d(s_\gamma, s'_\gamma)$$

= $d(s_j, s'_j) + d(p_\gamma, q_\gamma)$



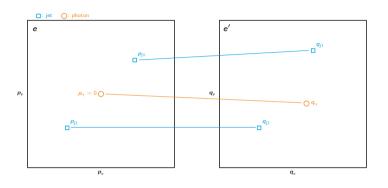
$$d(e, e') = d(s_j, s'_j) + d(s_{\gamma}, s'_{\gamma})$$

= $\min[d(p_{j1}, q_{j1}) + d(p_{j2}, q_{j2}), d(p_{j1}, q_{j2}) + d(p_{j2}, q_{j1})] + d(p_{\gamma}, q_{\gamma})$



$$d(e, e') = d(s_j, s'_j) + d(s_{\gamma}, s'_{\gamma})$$

= $d(p_{j1}, q_{j1}) + d(p_{j2}, q_{j2}) + d(p_{\gamma}, q_{\gamma})$



$$d(e, e') = d(s_j, s'_j) + d(s_{\gamma}, s'_{\gamma})$$

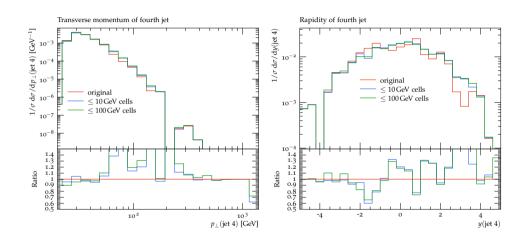
$$\stackrel{\tau=0}{=} |\vec{p}_{j1} - \vec{q}_{j1}| + |\vec{p}_{j2} - \vec{q}_{j2}| + |\vec{p}_{\gamma} - \vec{q}_{\gamma}|$$

Event samples

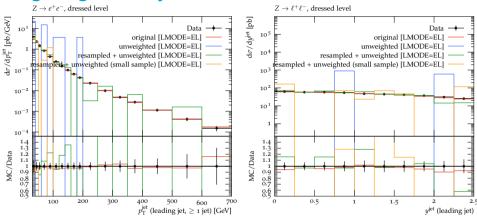
[BLACKHAT 2013 + 2017]

Sample	Process	Centre-of-mass energy	# events
Z1	$pp o (Z o e^+ e^-) + {\sf jet}$	13 TeV	8.21×10^8
Z2	$pp ightarrow (Z ightarrow e^+ e^-) + 2$ jets	13 TeV	$5.30 imes 10^8$
Z3	$ ho ho ightarrow (Z ightarrow e^+ e^-) +$ 3 jets	13 TeV	$1.65 imes 10^9$
W5	$pp ightarrow (W^- ightarrow e^- u_e) + 5 ext{ jets}$	7 TeV	1.17×10^9

Resampling for W + 5 jets



Unweighting for Z + jet



original: 8.21×10^8 events unweighted: 320 events

resampled + unweighted: 11574 events

resampled + unweighted (small sample): 320 events