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What are event weights?

Example: prediction for dijet production cross section
© Relate to partonic cross section

LO
02 jets = 02 partons

@ Simulate partonic scattering events with weights w;

» Computed from scattering matrix elements + PDF + phase space factor
» Weights proportional to probability: w; > 0
» Sum of weights gives the cross section:

02 partons = E Wi
i
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What are event weights?

Example: prediction for dijet production cross section
© Relate to partonic cross section

LO
O2jets = 02 partons

@ Simulate partonic scattering events

02 partons = E Wi
i

02 partons, 03 partons NOt separately observable:

Events weights can be both positive and negative ]
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Why are negative event weights a problem?
Number of required events to reach given accuracy:
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Large number of events = expensive detector simulation
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Why are negative event weights a problem?
Number of required events to reach given accuracy:
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[BLACKHAT 2013 + 2017]

e Further increases with higher orders & parton shower matching/merging

5/9



Cell resampling
The idea

Events in 2D projection of phase space:

w = 400

w = —o0o
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Cell resampling
The idea

Events in 2D projection of phase space:

w = 400
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© Choose negative-weight event as seed
@ Redistribute weights in small hypersphere C around seed
©® Repeat

w = —00
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Cell resampling
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Cell resampling drastically reduces the number of required events ]
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Cell resampling

Analysis from
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Cell resampling preserves predictions
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Summary

* Negative event weights lead to slow statistical convergence
¢ |dea: remove negative weights by smearing over small phase space regions
» Potential to reduce the number of required events by orders of magnitude

Preserves predictions of observables

» Agnostic with respect to process and observables

» Automatic improvement with increasing statistics

» Computationally efficient: ~ 55 CPU hours for one billion events (W + 5 jets)
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Summary

* Negative event weights lead to slow statistical convergence

* Idea: remove negative weights by smearing over small phase space regions
» Potential to reduce the number of required events by orders of magnitude
» Preserves predictions of observables
» Agnostic with respect to process and observables

» Automatic improvement with increasing statistics
» Computationally efficient: ~ 55 CPU hours for a billion events (W + 5 jets)

Make event generation more sustainable
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Summary

* Negative event weights lead to slow statistical convergence
* |dea: remove negative weights by smearing over small phase space regions

» Potential to reduce the number of required events by orders of magnitude

» Preserves predictions of observables

» Agnostic with respect to process and observables

» Automatic improvement with increasing statistics

» Computationally efficient: ~ 55 CPU hours for one billion events (W + 5 jets)

Future directions:
¢ Application to parton showered samples
e Systematic estimate of uncertainties
¢ Integrate into existing workflows
* Guide Monte Carlo event generation?
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Cell resampling

w = +0o
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Cell resampling:
Repeatedly

@ Choose seed event with w < 0 for cell C
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Cell resampling

Cell resampling:
Repeatedly

@ Choose seed event with w < 0 for cell C

© lteratively add nearest event to cell until 3 ;.o w; > 0

w = 400
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Cell resampling

Cell resampling:
Repeatedly

@ Choose seed event with w < 0 for cell C

© lteratively add nearest event to cell until 3 ;.o w; > 0

© Reweight: w; — w! = 2 jec ' lwi| >0
! zj'ec [w;|

w = 400
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Cell resampling

Cell resampling:
Repeatedly

© Choose seed event with w < 0 for cell C
© lteratively add nearest event to cell until 3 ;.o w; > 0

© Reweight: w; — w] =

Sufficient statistics: cell size < experimental resolution
Otherwise: limit cell size, accept w! < 0

w = 400

= —oo
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Cell resampling

= 400
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Cell resampling:
Repeatedly
© Choose seed event with w < 0 for cell C
© lteratively add nearest event to cell until 3 ;.. w; > 0
What does “nearest” mean?
© Reweight: w; — w/ = szf':;'xj‘ lwj| >0
Sufficient statistics: cell size < experimental resolution
Otherwise: limit cell size, accept w! < 0
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Distances in phase space

Need distance function d(e, e') between events e, €’

o d(e, €') small = e, ¢ look similar in detector or differ only in
properties the event generator can’t predict
e Desirable: d(e, €') large = e, €’ look different in detector
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Distances in phase space

Need distance function d(e, e') between events e, €’

o d(e, €') small = e, ¢ look similar in detector or differ only in
properties the event generator can’t predict
e Desirable: d(e, €') large = e, €’ look different in detector

Example: infrared safety
* d(e, €') unaffected by collinear splittings with © — 0
* d(e, €') unaffected by soft particles with p — 0
= define distance in terms of infrared-safe physics objects, e.g. jets

Here: Example for fixed-order (QCD) event generator

3/14



Distances in phase space

Concrete implementation jets electrons
© Collect all “particles” in event eintosets { s1 , s2 ..., st}
T
d(e, &) = Z d(st, s¢)
t=1
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Distances in phase space _
jets electrons

/

@ Collect all “particles” ineventeintosets { s1, s> ,...,sr}

@ Particles in s; have four-momenta ( p; , ... ......... , PP )

Particles in s; have four-momenta (g1 , ... ,9,0,...,0)

P
d(st.s) = min 3 de(pi 4o()
i=1
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Distances in phase space _
jets electrons

/

@ Collect all “particles” ineventeintosets { s1, s> ,...,sr}

@ Particles in s; have four-momenta ( p; , ... ......... , PP )
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Distances in phase space _
jets electrons

/

@ Collect all “particles” ineventeintosets { s1, s> ,...,sr}

@ Particles in s; have four-momenta (p; , ... ......... , PP )

Particles in s; have four-momenta ( ¢1 , ... g,0,...50)

P
d(st.s) = min 3 de(pi 4o()
i=1
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Distances in phase space

jets electrons
© Collect all “particles” in event einto sets { s1 , s2 ..., st}
T
d(e €)= Z d(st, s;)
t=1
@ Particles in s; have four-momenta (p; , ... ......... . pP )
Particles in s; have four-momenta (¢ , ... ,q,0, ..., 0)

P
d(se, s1) = Urglsr:j Z de(Pi, 9o (i))
o1

©® Choose distance function between particle momenta
Here: independent of particle type t, do not consider internal structure

3
di(p, q) = \I
=1 4/14

(pi — )2+ 712(pL —q1)?>  T:tunable parameter



Distances in phase space

Example

0: jet O photon

e
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Distances in phase space

Example

0: jet O photon

e

=00
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Distances in phase space

Example

O
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Distances in phase space

Example

0: jet  (O: photon

e e

d(e,e')=dl(sj,s;) + d(s,,5))
= d(sj SJ/) + d(py, Gy)
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Distances in phase space

Example

O: jet O photon

e e

d(e,e')=d(s;s) + d(sy, s))
=min[d(pj1. gj1) + d(pj2. 9j2). d(pj1. gj2) + d(pj2, gj1)] + d(py. ay)
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Distances in phase space

Example

O: jet O photon

e e

d(e.e')=d(s;,s) + d(sy. s,)
=d(pj1, gj1) + d(pj2, gj2) + d(py, Gy)
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Distances in phase space
Example

O: jet O photon

e e

d(e,e')=d(s;,s}) + d(sy. s,)
=0, . = . = . .
=B — Gl + |2 — G2l + |5y — Gyl
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Event samples

[BLACKHAT 2013 + 2017]

Sample Process Centre-of-mass energy # events

z1 pp — (Z — eTe™) +jet 13TeV 8.21 x 108
z2 pp— (Z —ete ) +2jets 13TeV 5.30 x 108
Z3 pp— (Z - ete ) +3jets 13TeV 1.65 x 10°
W5 pp— (W~ = e ve)+5jets 7TeV 1.17 x 10°
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Resampling for W + 5 jets

Transverse momentum of fourth jet

Rapidity of fourth jet

original
—— < 10GeV cells
—— < 100GeV cells

1/0 do/dp (jet4) [GeV~1]

1/0 do/dy(jet 4)

original
—— < 10GeV cells
—— < 100GeV cells
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Unweighting for Z + jet
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original: 8.21 x 108 events

unweighted: 320 events

resampled + unweighted: 11574 events

resampled + unweighted (small sample): 320 events
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