Silicon sensors and their quirks understanding humidity sensitivity

Ilona-Stefana Ninca¹ with special thanks to Ingo Bloch¹, Ben Brüers¹, Peilin Li² and Christian Scharf² ¹Deutsches Elektronen-Synchrotron (DESY) — ²Humboldt-Universität zu Berlin, Berlin, Germany

DESY Zeuthen Particle Physics Mini-Retreat 2023

Monday, June 12th, 2023

Humidity Studies Motivation

ATL-ITK-PROC-2022-009

- Large area sensors in ATLAS ITk showed humidity sensitivity => early breakdown
 - => can irreversibly destroy the sensor
- pn junction with reverse-bias => blocks current flow
 - small amount of current, called leakage current, can still flow through the sensor
- Region where breakdown happens: visible as bright spots

ATLAS18 Test Structures

- Test structures monitor the characteristics of silicon
 bulk
- Similar properties as the strip sensor
- More cost-effective to stress test than a large area sensor
- Goals:
 - Identify cause of the sensor's high humidity sensitivity
 - Develop a more robust geometry

- 8 mm x 8 mm n⁺pp⁺ (n-in-p) diodes (**MD8 diodes**)
- Active thickness ~ 296 μ m
- Bulk doping: p-type concentration ~ 4.8 × 10¹² cm⁻³

```
• V_{\text{Full Depletion}} = \sim -330 \text{ V}
```

Current – Voltage Characterization

IV Curve

Measured GR and pad currents in respect to the applied bias voltage for RH = 36 % and T = 25° C. Breakdown at - 825 V.

Imaged hot electron emission at RH = 36 % and T = 25° C. V_{bias} = - 990 V.

Technology Computer Aided Design (TCAD) Simulations

• <u>Sentaurus TCAD</u> is a suit of software tools developed by **Synopsis**

- 0.1 µm thick PolySilicon layer on top of the passivation
- GR and pad at ground
- - 900 V applied on the ER and backside

Mobile Charge at the Surface and TCAD Modeling

- During wafer manufacturing, charges can become trapped
 - For RH > 10 %, trapped charges become mobile
 - ⇒ can affect device characteristics such as threshold voltage, leakage current, and capacitance
- Modeling Mobile Charge in TCAD
 - TCAD utilizes advanced numerical techniques to simulate and predict the behavior of semiconductor devices
 - Mobile charge at the surface is modeled through surface potential and charge equations
 - Surface states and their energy levels are considered to accurately capture the impact of mobile charge
- TCAD Simulation Steps
 - Surface Potential Calculation:
 - ⇒ Solve Poisson's equation to determine the electrostatic potential at the semiconductor surface
 - Surface Charge Calculation:
 - \Rightarrow Utilize charge equations to compute the density and distribution of mobile charges at the surface
 - Iterative Process:
 - ⇒ The simulation iterates until a self-consistent solution is reached, considering the interaction between charge and potential

TCAD Results of MD8 Diode with p-stop

IV Curve

- For RH = 40 % and V_{const} = 900 V, ulletbreakdown at 3097 s
- For dry conditions V_{const} = 900 V, no sign of • breakdown after 3 hours

400

TCAD Results of MD8 Diode with p-stop

Impact Ionization (cm^{^-}3*s^{^-}1)

$$\begin{array}{l} \mu_{e,h} = 0.0067 \ cm^2 / (V^*s) \\ RH = 40 \ \% \ [1] \\ V_{bias} = - \ 900 \ V \\ \tau = \ 10^{-6} \ s \\ U = 4.78 \ \times \ 10^{15} \ cm^{-3} \ s^{-1} \end{array}$$

- Charge spread between GR and pad ⇒ possibility of a short
- High electric field near ER and GR ⇒ high chances of hot electrons to be emitted

Hot Electron Emission

- Photo-emission mechanisms in semiconductors:
 - radiative recombination involving both carrier types (conduction band to valence band)
 - radiative transitions which involve one type of carrier (conduction/valence band to conduction/valence band)
- High electric field
 - accelerated free electrons -> hole electron pairs formation -> increased current -> avalanche breakdown

50000 RH = 36 % $T = 25^{\circ} C$ $V_{bias} = -990 V$ $I_{leakage} = 2 \mu A$ Exposure = 60 s

0

Top Transient Current Technique (Top-TCT)

- Employ Top-TCT to investigate EF near GR region
- Method: red laser illumination (λ = 660 nm) from top
- Measure: transient current generated by the electron-hole pairs drift:

 $I_{e,h}(t) = A e_0 N_{e,h} \vec{v_{e,h}}(t) E_w(y) = const \vec{v_{e,h}} E_w(y)$

• The amplitude of the current after charge formation can be calculated with:

 $I(y,t\sim 0) = const \mu_{e,h} E_W(y) E(y)$

- $e_0 =$ elementary charge
- $N_{e,h}$ = number of created e-h pairs
- $v_{e,h}^{,...}$ = drift velocity
- $\mu_{e,h}$ = mobility
- $E_w(y)$ = weighting field

Top Transient Current Technique (Top-TCT)

2

Ω

Х

Allpix Squared Top-TCT Simulations of MD8 Diode φ_w/V_w of Pixel(1,1)

Outlook

- Can image hot electron emission using a near-IR camera
- TCAD simulation seems to estimate hot carrier emission and TCT measurements in first comparison
- Allpix Squared simulations provide comparable results to experiment
- Next steps:
 - Take multiple pictures over a long period of time to study the evolution of the hot electron emission
 - Systematically compare TCAD results with lab measurements
 - Try to estimate Electric Field from Top-TCT measurements
 - Have a systematic study for several sensors at different humidity values

Thank you!

Back up

Allpix Squared Top-TCT Simulations of a Simple Diode

Contact

DESY.

Deutsches Elektronen-Synchrotron

www.desy.de

Ilona Ninca ATLAS Upgrade (Zeuthen) ilona.ninca@desy.de 7656